Abstract
This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.
본 논문은 걸음걸이 분석 기반의 특징 추출과 NEWFM(Neural Network with Weighted Fuzzy Membership Functions)을 이용하여 건강한 사람의 족압(foot pressure)과 파킨슨병 환자의 족압으로부터 건강한 사람과 파킨슨병 환자를 분류하는 방안을 제시하고 있다. NEWFM에서 사용할 입력을 추출하기 위해서 첫 번째 단계에서는 PhysioBank에서 제공하는 족압 데이터와 시간에 따른 족압의 변화를 이용하여 각각 4개의 특징을 추출하였다. 두 번째 단계에서는 웨이블릿 변환(wavelet transform, WT)을 이용하여 이전 단계에서 추출한 8개의 특징으로부터 웨이블릿 계수를 추출하였다. 마지막 단계에서는 추출된 웨이블릿 계수들을 이용하여 통계적 기법인 주파수 분포와 주파수 변동량을 이용하여 40개의 입력을 추출하였다. NEWFM은 족압 데이터로부터 8개의 특징을 추출하여 건강한 사람과 파킨슨병 환자를 분류하였을 때 왼쪽 족압과 오른쪽 족압의 차를 이용한 특징과 시간에 따른 족압의 변화에 대한 차를 이용한 특징의 경우에 높은 정확도(accuracy)가 나타났다. 이러한 결과를 통하여 걸음걸이에 있어서 질질 끄는 특징을 보이는 파킨슨병 환자의 양쪽 족압의 차가 건강한 사람의 양쪽 족압의 차보다는 상대적으로 적다는 특징을 본 실험을 통해 확인할 수 있었다.