• Title/Summary/Keyword: 원호 보간

Search Result 37, Processing Time 0.023 seconds

Real-time Line Interpolation of a 2.3D Circular Arc based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 2.3차원 원호의 실시간 직선 보간)

  • Lee, Je-Phill;Lee, Cheol-Soo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.399-404
    • /
    • 2001
  • In CNC machining, a 3D(3-dimension) linear segment and a 2D(2-dimension) circular arc are general forms given by CAD/CAM system. Generally, the 2D circular arc machining is processed using dividing into some linear segments. A 3D circular arc also don't exist in the standard form of NC data. This paper present a algorithm and method for real-time machining of a circular arc(not only the 2D one, but also the 3D one). The 3D circular arc machining is based on the 2D circular arc machining. It only needs making a new coordinate system, converting given 3D points(a start point, a end point, and a center point of a 3D circular arc) into points of the new coordinate system, and processing a inverse transformation about a interpolated point. The proposed algorithm was implemented and simulated on PC system. It was confirmed to give a gcod result.

  • PDF

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

A Study on the Performance Evaluation ofNe controller using Ball-Bar (Ball-Bar를 이용한 NC Controller 성능 평가 연구)

  • Shin, Chang-Ho;Lee, Eung-Suk;Suh, Suk-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1033-1038
    • /
    • 1995
  • NC 공작기계의 contour 운동 오차를 측정하기 위하여 사용되는 Ball-Bar에 의한 원호 보간 시험 데이터를 이용하여 NC controller의 성능을 평가 할 수 있는 S/W에 의한 방법을 제시한다. 본 논문에서 지금까지는 분석이 어려웠던 Masrer-Slave Changeover의 분석을 가능하게 하였으며, Ball-Bar로 부터 얻어지는 데이터를 Weighted Residual Method에 의한 종합적인 분석을 하였으며, 오차 원인별 비교를 위해 Eztra Sum of Squares Method를 도입하였다. 본 연구의 실제 적용을 위한 측정 및 분석 S/W를 개발하였으며, 결과적으로 NC controller의 성능평가에 유용함을 알 수 있었다. 무부하 조건에서의 Ball-Bar에 의한 분석 데이터와의 비교를 위하여 원형 시편을 가공하고, 진원도 측정 및 분석을 통하여 유사한 오차 pattern을 가짐을 알 수 있었다.

  • PDF

Modified Raised-Cosine Interpolation and Application to Image Processing (변형된 상승여현 보간법의 제안과 영상처리에의 응용)

  • 하영호;김원호;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.453-459
    • /
    • 1988
  • A new interpolation function, named modified raised-cosine interpolation, is proposed. This function is derived from the linear combination of weighted triangular and raised-cosine functions to reduce the effect of side lobes which incur the interpolation error. Interpolation error reduces significantly for higher-order convolutional interpolation functions of linear operators, but at the expense of resolution error due to the attenuation of main lobe. However, the proposed interpolation function enables us to reduce the side lobes as well as to preserve the main lobe. To prove practicality, this function is applied in image reconstruction and enlargement.

  • PDF

Research into Improvement of Circular-interpolation Accuracy (원호보간정도 향상에 관한 연구)

  • 김태원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.624-628
    • /
    • 2000
  • The performance of machine tools is qualified by many test procedures given by the national/international standards or respected organisations. Among them, test regarding circular-interpolation accuracy is getting to be one of the important acceptance tests at the production level. Machine tool systems are composed of many mechanical and electronical sub-systems so that it is not easy to improve dynamic performance by examining only one particular part. Instead, overall systematic approach encompassing all the contributing elements is necessary to achieve good results. In this study, measures taken in circular accuracy improvements will be explained case by case.

  • PDF

A Study on the Optimized Biarc Curve Fitting of Involute Curve (인벌류트 곡선의 Biarc Curve Fitting 최적화에 관한 연구)

  • Cho, Seung-Rae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.71-78
    • /
    • 1999
  • The determination of the optimum biarc curve passing through a given set of points along involute curve is studied. The method adopted is that of finding the optimum number of span and the optimum length of the span such that error between the biarc curve and involute curve minimum. Iterative method is effectively used to find the optimim number and length of the span on involute curve with reduced length of NC-code.

  • PDF

A study on the biarc curve fitting of involute curve (Involute Curve의 Biarc Curve Fitting에 관한 연구)

  • Lee, C.M.;Lee, S.H.;Cho, S.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.78-85
    • /
    • 1996
  • The determination of the optimum biarc curve passing through a given set of points along involute curve is studied. The method adopted is that of finding the optimum no. of span and the optimum length of the span such that the error between the biarc curve and involute curve is minimum. Irregular curve span method is effectively used to describe the involute curve with reduced length of NC-Code.

  • PDF

Development of an Embedded Motion Controller based on the IEC 61131-3 International Standard Language (IEC 61131-3 국제표준언어 기반 임베디드 모션제어기의 개발)

  • Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3574-3580
    • /
    • 2009
  • An embedded motion controller supporting the PLC programming environment based on the IEC 61131-3 International Standard Language was developed in this paper. In this developed motion controller, the CoDeSys, one of the IEC61131-3 development tools, was embedded in order to support that of PLC as well as the development environment of the PC, and the various function blocks based on PLCopen standard for motion control such as the linear and circular interpolation control were implemented. Moreover, the ethernet based remote control on real-time operating system and the motion simulator for a motion programmer were implemented.

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

A study on the improvement of calculation efficiency for the two-axis hardware interpolator using DDA (DDA를 이용한 하드웨어 보간기의 계산효율 향상에 관한 연구)

  • 오준호;최기봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.968-975
    • /
    • 1988
  • The maximum feedrate generated from the hardware DDA is closely related to its calculation efficiency. The smaller interpolation span results in the lower calculation efficiency. This paper presents the method to improve the calculation efficiency for the smaller interpolation span. For the linear interpolation the higher calculation efficiency can be achieved by putting biggest value that the interpolation DDA can hold. for the circular interpolation, however, the scheme used for linear interpolation does not work since arbitrary change of value in the interpolation DDA changes the radius of the circle. The bit length of the hardware DDA is adjusted instead of adjusting the value in DDA, which results in the every same effect on calculation efficiency for the circular interpolation. The hardware circuit and supporting software are designed, and tested by two axis step motor driven milling machine. The experimental results show that the proposed method drastically increases the maximum feedrate even for the smaller interpolation span.