• Title/Summary/Keyword: 원통셸

Search Result 97, Processing Time 0.02 seconds

Acoustic Radiation from a Submerged Stiffened Cylindrical Shell Excited by Resiliently Mounted Machinery (탄성지지된 기계류에 의해 가진되는 잠수된 보강 원통형 셸의 음향방사)

  • Bae, Soo Ryong;Lee, Shibok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper investigates the underwater acoustic radiation from a periodically stiffened cylindrical shell excited resiliently mounted machinery. Underwater acoustic radiation is important to a submarine. Generally, submarine structure can be modeled as stiffened cylindrical shell immersed in water. Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring stiffeners. Transmitted force from machine to a shell through isolator can be different by the impedance of shell. In this paper the effect of a shell impedance for acoustic radiation is investigated. Impedance of a shell should be considered if thickness of a shell is thin.

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode (축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스)

  • Park, Chan-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

Stress Analysis of Axisymmetric Cylindrical Shell (축대칭 원통형 셸의 응력해석)

  • Choi, M.S.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the algorithm for the static analysis of an axisymmetric cylindrical shell by using the finite element-transfer stiffness coefficient method (FE-TSCM) is suggested. TE-TSCM combining both the modeling procedure of the finite element method (FEM) and the transfer procedure of the transfer stiffness coefficient method (TSCM) has the advantages of FEM and TSCM. After computational programs are made by both FE-TSCM and FEM for the stress analysis of the axisymmetric cylindrical shell, we compare the numerical results by FE-TSCM with those of FEM for two computational models in order to confirm the trust of FE-TSCM.

An Analysis on the Underwater Sound Radiation from Finite Cylindrical Shell with Stiffeners (유한 보강 원통형 셸 구조에 의한 수중 방사소음 해석)

  • 전재진;정우진
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.717-726
    • /
    • 1996
  • In this report, the underwater sound radiation from finite cylindrical shell with stiffeners which is the basic configuration of submerged vehicle is studied analytically and experimentally. The shell vibrations are obtained by using the shell theory of Sanders-Koitter. The stiffeners and modeled for I-type and the stiffness matrices are obtained by using beam model. In the analytical stuides, the vibrations of cylindrical shell are expressed by using cosine series expansions to consider the arbitrary end boundary conditions. It is agree to the theoretical and experimental results well.

  • PDF

Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions (다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석)

  • 임정식;손동성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

Vibration Analysis of Combined Cylindrical Shells with an Annular Plate (환원판이 결합된 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.767-776
    • /
    • 2003
  • The theoretical method is developed to Investigate the nitration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural coupling between shell and plate is simulated using two types of artificial springs a translational spring is introduced for translational coupling and a rotational spring is used for rotational coupling. The springs are continuously distributed along circumferential direction. Using the Rayleigh-Ritz method the natural frequencies and mode shapes of the combined shell with an annular plate examine. The effect of Inner-to-outer radius ratio, axial position of annular plate and length-to-radius ratio of shell on vibration characteristics of combined cylindrical shells is studied. The theoretical results are verified by comparison with FEM results.

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields with Different Boundary Conditions (경계조건에 따른 자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Ohseop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.653-660
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT with two different boundary conditions(C-C, S-S) was performed through discretization of equations of motion and boundary condition. Model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence for each boundary conditions are investigated and pertinent conclusions are derived.

  • PDF

Finite Element Vibration Analysis of Cylindrical Shells with Internal Fluid Flow (내부 유체 유동을 포함하는 원통 셸의 유한요소 진동해석)

  • 서영수;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.911-916
    • /
    • 2003
  • A method for the dynamic analysis of thin-walled cylindrical shell conveying steady fluid flow presents. The dynamics of thin-walled shell is based on Sanders' theory and the fluid flow in cylindrical shell is treated inviscid, incompressible fluid. A dynamic coupling conditions at fluid-structure interface is used. The equations of motion are solved by a finite element method and validated by comparing the natural frequency with other published results and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

On the Dynamic Response of Laminated Circular Cylindrical Shells under Dynamic Loads (동하중을 받는 복합재료 원통셸의 동적거동 해석)

  • 이영신;이기두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2684-2693
    • /
    • 1993
  • The free vibration and dynamic response of cross-ply for CFRP and GFRP laminated circular cylindrical shells under dynamic loadings are investigated by using the first-order shear deformation shell theory. The modal analysis technique is used to develop the analytical solutions of simply supported cylindrical shells under dynamic load. The analysis is based on an expansion of the loads, displacements and rotations in a double Fourier series which satisfies the and boundary conditions of simply support. Analytical solution is assumed to be separable into a function of time and a function of position. In this paper, the considered load forces are step pulse, sine pulse, triangular(1, 2, 3) pulse and exponential pulse. The solution for a given loading pulse can be found by involving the convolution integral. The results show that the dynamic response are governed primarily by the natural period of the structure.