• Title/Summary/Keyword: 원거리 데이터 전송

Search Result 75, Processing Time 0.022 seconds

Implementation of the Disaster Monitering System with PLC/CDMA Environments (PLC/CDMA 환경에서의 재난 감시 시스템 구현)

  • Park, Sang-Hwan;Kim, In-Min;Yoon, Seon-Tae;Park, Ki-Won;Go, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.824-830
    • /
    • 2010
  • PLC_Zigbee system, implemented in a previous study, uses ZigBee Node based on PLC (Power Line Communication). The weak point of the system is that the long distance powerline communication and PLC is impossible to use in the areas where the powerline is not installed. In this paper, we added CDMA (Code Division Multiple Access) module using a data transfer method of SMS (Short Message Service) and XBee of WSN (Wireless Sensor Network) module to the previous system, and got around the restriction of place and environment of PLC system through the interfacing of each communication media. We, thus, implemented a wide range of real monitoring system.

Mobile Presentation using Transcoding Method of Region of Interest (관심 영역의 트랜스코딩 기법을 이용한 모바일 프리젠테이션)

  • Seo, Jung-Hee;Park, Hung-Bog
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.197-204
    • /
    • 2010
  • An effective integration of web-based learning environment and mobile device technology is considered as a new challenge to the developers. The screen size, however, of the mobile device is too small, and its performance is too inferior. Due to the foregoing limit of mobile technology, displaying bulk data on the mobile screen, such as a cyber lecture accompanied with real-time image transmission on the web, raises a lot of problems. Users have difficulty in recognizing learning contents exactly by means of a mobile device, and continuous transmission of video stream with bulky information to the mobile device arouses a lot of load for the mobile system. Thus, an application which is developed to be applied in PC is improper to be used for the mobile device as it is, a player which is fitting for the mobile device should be developed. Accordingly, this paper suggests mobile presentation using transcoding techniques of the field concerned. To display continuous video frames of learning image, such as a cyber lecture or remote lecture, by means of a mobile device, the performance difference between high-resolution digital image and mobile device should be surmounted. As the transcoding techniques to settle the performance difference causes damage of image quality, high-quality image may be guaranteed by application of trial and error between transcoding and selected learning resources.

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF

5G Mobile Communications: 4th Industrial Aorta (5G 이동통신: 4차 산업 대동맥)

  • Kim, Jeong Su;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.337-351
    • /
    • 2018
  • This paper discusses 5G IOT, Augmented Reality, Cloud Computing, Big Data, Future Autonomous Driving Vehicle technology, and presents 5G utilization of Pyeongchang Winter Olympic Games and Jeju Smart City model. The reason is that 5G is the main artery of the 4th industry.5G is the fourth industrial aorta because 5G is the core infrastructure of the fourth industrial revolution. In order for the AI, autonomous vehicle, VR / AR, and Internet (IoT) era to take off, data must be transmitted several times faster and more securely than before. For example, if you send a stop signal to LTE, which is a communication technology, to a remote autonomous vehicle, it takes a hundredth of a second. It seems to be fairly fast, but if you run at 100km / h, you can not guarantee safety because the car moves 30cm until it stops. 5G is more than 20 gigabits per second (Gbps), about 40 times faster than current LTE. Theoretically, the vehicle can be set up within 1 cm. 5G not only connects 1 million Internet (IoT) devices within a radius of 1 kilometer, but also has a speed delay of less than 0.001 sec. Steve Mollenkov, chief executive officer of Qualcomm, the world's largest maker of smartphones, said, "5G is a key element and innovative technology that will connect the future." With 5G commercialization, there will be an economic effect of 12 trillion dollars in 2035 and 22 million new jobs We can expect to see the effect of creation.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.