• Title/Summary/Keyword: 우주발사체(space Launch Vehicle)

Search Result 293, Processing Time 0.024 seconds

The Development of Air-based Space Launch Vehicle for small satellites (초소형위성 발사를 위한 공중기반 우주발사체 발전방안)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • The end of the ROK-U.S. missile guidelines opened up the possibility of developing space launch vehicles for various platforms based on air and sea. In particular, the air-based space launch vehicle is an essential space power projection capability compared to the ground-based space launch vehicle in consideration of the geographical location of the Korean Peninsula, such as the deployment of various satellite orbits and the timely launch of satellite. In addition, compared to the ground-based launch vehicle, the cost reduction effect is large, and it has the merit of energy gain because it can be launched with the advantage of the aircraft's altitude and speed. Therefore, in this paper, the necessity of air-based space launch vehicle in the strategic environment of the Korean Peninsula is clearly presented, and through technology trend analysis of various air launch vehicle, the three methods are proposed to have the most efficient air-based space launch vehicle capability in the Korean situation.

KSLV-II Cost Estimate using TRANS COST 7.1 (TRANSCOST 7.1을 적용한 실용위성 발사체 비용추정)

  • Seo, Yun-Kyoung;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • Space launch vehicle development needs many kinds of technologies synthetically. Nowadays, KARI (Korea Aerospace Research Institute) has developed a space launch vehicle, KSLV-I (Korea Space Launch Vehicle-I), that is able to load with an 100kg payload. After that it plans to develop Korean Space Launch Vehicle. As space launch vehicle becomes more complicate and larger, it needs a scientific and analytic development cost estimation. In this paper a cost estimation for KSLV-II using TRANSCOST 7.1 was studied.

  • PDF

Estimation of Production and Operation Cost of KSLV-II using TRANSCOST (TRANSCOST를 이용한 한국형발사체의 생산 및 운용 비용 추정)

  • Yoo, Dong-Seo;Kim, Hong-Rae;Choi, Jong-Kwon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.567-575
    • /
    • 2011
  • The development of space launch vehicle is an important step to advance to developed countries in the space area. It is also so risky due to necessity of huge costs and longer development period. The accuracy of cost estimation is important to develop a space launch vehicle successfully and efficiently. It is also necessary to estimate production and operation cost in order to develop commercial space launch vehicle possessing competitiveness. In this paper, Korean factors to be able to reflect the current state of workforce, average working hours and technology readiness level in Korea were analyzed to estimate production and operation cost of space launch vehicles that are developed in Korea. Korean factors have been applied to production and operation cost estimation of KSLV-II based on TRANSCOST. We evaluated the competitiveness level of KSLV-II as the commercial launch vehicle in the commercial launch services market by comparing with cost per flight of foreign launch vehicles.

Trend Analysis based Strategy Evaluation for Launch Vehicle Industry in Korea (한국의 우주발사체 산업 발전을 위한 우주발사서비스 시장진입 전략 평가)

  • Hong, Seulki;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.936-942
    • /
    • 2015
  • This paper suggests the significant strategies and their priority to deal with space transportation market trends. First, market trends related with technical improvement and change in demand are analyzed by the literature research. The three key trends are obtained: 'Increasing Demand of High-Performance Launch Vehicles', 'Rising of Low-Price Launch Vehicles', and 'Rising of Dual/Multi-Launch'. And then, strategies for developing the launch vehicle industry in Korea are selected from several studies about commercialization of Korean launch vehicle. The strategies are evaluated by the experts through pairwise comparison matrix and the criteria for this process is how significantly does the strategy effect on the launch vehicle industry through market assessment. As a result, reliable order of priority among the strategies are obtained. Under the three key trends, strategy to enhance reliability is most important. And, strategy to have price competitiveness has secondary priority to deal with 'Rising of Low-Price Launch Vehicles' trend and 'Rising of Dual/Multi-Launch' trend. On the contrary, strategy of government's support is secondary under 'Increasing Demand of High-Performance Launch Vehicles' trend.

Development Trend of the Reusable Space Launch Vehicle (재사용 우주 발사체 개발 동향)

  • Jeong, Seokgyu;Bae, Jinhyun;Jeong, Gijeong;Koo, Jaye;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1069-1075
    • /
    • 2017
  • With the recent development of space technology, the satellite market, especially the small satellite market, is growing globally. As the satellite market continues to grow, the launch vehicle market is also growing, and demand for low-cost launches is increasing. There are a number of options for low-cost launches, including development of engine that uses low-cost propellants, product and transportation cost savings, but the most effective way to reduce launch costs is to reuse the used launch vehicles. USA's Space Shuttle, a famous rocket as manned spacecraft, could be referred as the start of reusable launch vehicle. However, Space Shuttle had limited reusable parts and it was very expensive even though it is a reusable launch vehicle because of its low efficiency. In recent years, aiming at a real reusable launch vehicle, reusable launch vehicle for commercial purposes have been developed around USA's SpaceX and Blue Origin, and re-landing tests were successfully accomplished. In addition, SpaceX successfully did the re-using of first-stage launch vehicle that had been succeeded in re-landing already. In accordance with this trend, countries such as Europe and India are also concentrating on the study of reusable launch vehicles. Including Blue Origin, companies like Virgin Galactic and XCOR in the United States, are also trying to commercialize the same reusable technology as the private manned space tourism. Confirmation of these technology trends is essential, because the re-use technology could change the landscape of the global launch vehicle market.

Design of Deep Space Missions Using a Dedicated Small Launch Vehicle (소형위성 전용 발사체를 이용한 심우주 임무 설계)

  • Choi, Su-Jin;Loucks, Mike;West, Stephen;Seo, Daeban;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.877-888
    • /
    • 2022
  • Recently, as the CAPSTONE, a precursor mission for Lunar Gateway, was launched on a small launch vehicle for the purpose of demonstrating communications and navigation technology in the NRHO, large attention was brought to this event that enabled high-impact deep space mission using dedicated small launch vehicle and small spacecraft. In this study, we introduced the concept of a dual launch operation and examined the capability of the new concept in the exploration of the Moon, Mars and asteroid. It turned out a single launch is sufficient for the lunar low orbit mission up to around 247 kg, and the dual launch option can transport 215 kg and 183 kg to nearby destinations as such as Mars and astroid Apophis respectively.

Trend of Domestic and International Development of Space Launch Vehicles (우주발사체 개발의 국내외 동향)

  • Gong, Hyeon-Cheol;Lee, Joon-Ho;Oh, Bum-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • There would be a long-waited launch of a Korean space launch vehicle(KSLV-I) in NARO Space Center which is located in Goheung, Jeol La Nam Do in Korea. Korea would be the nineth country in the world which could launch space launch vehicle itself. The launch of the 2nd technology satellite of 100kg with KSLV-I would give Korean hope and dream. In addition to the traditional space activities of U.S.A. and Russia, Japan launched the lunar satellite, Kaguya in 2007, China launched the lunar satellite, Change and succeeded in space walk and India launched the lunar satellite Chandrayaan in October, 2008. In this paper we study on the trend of domestic and international development of space launch vehicle considering all these space development activities.

  • PDF

A Study on the Estimation of Launch Success Probability for Space Launch Vehicles Using Bayesian Method (베이지안 기법을 적용한 우주발사체의 발사 성공률 추정에 관한 연구)

  • Yoo, Seung-Woo;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.537-546
    • /
    • 2020
  • The reliability used as a performance indicator during the development of space launch vehicle should be validated by the launch success probability, and the launch data need to be fed back for reliability management. In this paper, the launch data of space launch vehicles around the world were investigated and statistically analyzed for the success probabilities according to the launch vehicle models and maturity. The Bayesian estimation of launch success probability was reviewed and analyzed by comparing the estimated success probabilities using several prior distributions and the statistical success probability. We presented the method of generating prior distribution function and considerations for Bayesian estimation.

Study of the U.S. Missile Non-proliferation Policy Applied on Space Launch Vehicles of India and China (인도와 중국 우주발사체에 적용된 미국의 비확산정책 연구)

  • Choe, Nammi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • India and China are capable of developing indigenous space launch vehicles, with the rocket technology transferred from the U.S., Western countries, and the Soviet Union, in the 1950s and 1960s. Barring the early 1990s, both countries are absent in the missile nonproliferation regime, and have no major space cooperation records with the U.S., since the establishment of the Missile Technology Control Regime in 1987. With the advent of the $21^{st}$ century, historic progress has been made in the U.S.-India space cooperation, which includes using Indian launch vehicles to launch U.S.non-commercial satellites. However, the U.S. is skeptical with regards to space cooperation and using Chinese space launch vehicle services. In this paper, we present the U.S. nonproliferation policy applied on launch vehicles of India and China, and different aspects of the policy will be examined to draw implications on Korean space activities.

Analysis on Acoustic Noise around Launch Pad Induced by the Launch of a Space Launch Vehicle (우주발사체 발사에 의한 발사장 주변의 음향 소음 분석)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.208-215
    • /
    • 2012
  • The acoustic noise around a launch pad by launches of space launch vehicles was analyzed. The magnitudes of sound noise at some points near launch pad were predicted by locating the sound source at the exhaust jet plume of the rocket engine and considering several factors such as the directivity of the sound propagation and atmospheric attenuation. Specifically, the launch noise of Korea Space Launch Vehicle-I (KSLV-I) was estimated, and was compared to the actual measurement results. The analysis results proved to be heavily affected by the characteristics of directivity of sound propagation and the analysis showed good agreements with the measurements when the directivity of the sound was appropriately adjusted.