• Title/Summary/Keyword: 외팔 파이프

Search Result 29, Processing Time 0.024 seconds

Flutter Instability of a Discontinuous Cantilevered Pipe Conveying Fluid (유동유체에 의한 불연속 외팔 파이프의 플러터 불안정)

  • 류봉조;류시웅;임경빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.273-277
    • /
    • 2004
  • This paper deals with the dynamic stability and vibration of a non-uniform cantilevered pipe conveying fluid. The present model consists of two segments with different cross-sections. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocities and stability maps of the pipe are obtained by changing step ratios, mass ratios and internal damping parameters of the pipe. Finally, the vibrational modes associated with flutter are shown graphically.

  • PDF

Eigenvalue Branches and Flutter Modes of a Discontinuous Cantilevered Pipe Conveying Fluid (유동유체에 의한 불연속 외팔 파이프의 고유치 분기와 플러터 모드)

  • 류시웅;임경빈;류봉조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1041-1047
    • /
    • 2004
  • This paper deals with the dynamic stability and vibration of a discontinuous cantilevered Pipe conveying fluid. The present model consists of two segments with different cross-sections. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocities and stability maps of the pipe are obtained by changing ratios of second area moment of inertia and mass ratios. Finally, the vibrational modes associated with flutter are shown graphically.

Dynamic Characteristics of Cantilever Pipe Conveying Fluid with Moving Mass Considering Nozzle Angle (노즐 경사각을 고려한 이동질량을 가진 유체이송 외팔 파이프의 동특성 해석)

  • 윤한익;손인수;김현수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.18-24
    • /
    • 2002
  • The vibrational system in this study consists of a cantilever pipe conveying fluid, the moving mass upon it, and an attached tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the velocity and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a cantilever pipe using a numerical method. While the moving mass moves upon the cantilever pipe, the velocity of fluid flow and the nozzle angle increase; as a result, the tip displacement of the cantilever pipe, conveying fluid, is decreased. After the moving mass passes over the cantilever pipe, the tip displacement of the pipe is influenced by the potential energy of the cantilever pipe and the deflection of the pipe; the effect is the result of the moving mass and gravity. As the velocity of fluid flow and nozzle angle increases, the natural frequency of he system is decreased at the second mode and third mode, but it is increased at the first mode. As the moving mass increases, the natural frequency of the system is decreased at all modes.

Influence of Design Parameters on Dynamic Behavior and Frequencies of Cantilever ripe Conveying Fluid (유체유동을 갖는 외팔 파이프의 동특성 및 진동수에 미치는 설계인자의 영향)

  • Yoon, Han-Ik;Son, In-Soo;Park, Il-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1815-1823
    • /
    • 2003
  • The vibrational system of this study consists of a cantilever pipe conveying fluid, the moving masses upon it and having an attached tip mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior and the natural frequency of a cantilever pipe by numerical method. The deflection of the cantilever pipe conveying fluid is increased due to the tip mass and rotary Inertia. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced by energy variation when the moving mass fall from the cantilever pipe. As the moving mass increase, the frequency of the cantilever pipe conveying fluid is increased. The rotary inertia of the tip mass influences much on the higher frequencies and vibration mode.

The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향)

  • 윤한익;손인수;진종태;김현수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

The Static Nonlinear Analysis of the Offshore Pipeline (해저(海底)파이프라인의 정적(靜的) 비선형(非線形) 해석(解析))

  • Park, Young Suk;Chung, Tae Ju;Cho, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 1990
  • The static nonlinear analysis of offshore pipeline is carried out by the finite element method. The governing equilibrium equation are derived by the principle of minimum potential energy and the modified Newton-Raphson procedure is used to solve the system of nonlinear algebraic equation. Geometrically nonlinear beam elements and spring elements are utilized to model the pipeline, stinger, pipe supports and seabed simultaneously. The beam element developed can be used to model redundant structures. It provides for both the torsional deformation and elongation of pipeline, and permits the use of different physical properties in each principal direction. The validity of this method is investigated by comparing the results with these obtained by other methods.

  • PDF

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.

Stability Analysis of Cracked cantilever beam Subjected to Follower force (유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Son, In-Soo;Kin, Dong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.