• Title/Summary/Keyword: 외부구속

Search Result 110, Processing Time 0.021 seconds

Taxonomic Review of the Genus Gymnogobius(Pisces, Gobiidae) from Korea (한국산 꾹저구속(농어목: 망둑어과) 어류의 분류학적 재검토)

  • Lee, Yong-Joo
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.65-77
    • /
    • 2010
  • To use the precise scientific name of the genus Gymnogobius from Korea, a taxonomic review of the genus Gymnogobius was made based on specimens collected in streams and estuaries of Korea from 1982 to 2007. The genus Gymnogobius in Korea includes 7 species: Gymnogobius breunigii (Steindachner), G. heptacanthus (Hilgendorf), G. macrognathos (Bleeker), G. mororanus (Jordan and Snyder), G. opperiens Stevenson, G. petschiliensis (Rendahl), G. urotaenia (Higendorf). A key to species of the genus Gymnogobius from Korea is provided, with description of their morphological characteristics and their distribution.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

The Confinement Effect on the Shear Stiffness of Inner Shear Connections in Concrete-filled Steel-Concrete Composite Girder (콘크리트로 충지된 강.콘크리트 합성거더의 구속효과가 내부 전단연결부 강도에 미치는 영향)

  • Lee, Sang-Yoon;Kim, Jung-Ho;Lee, Seung-Yong;Park, Kyung-Hoon;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.229-232
    • /
    • 2008
  • Researches on the steel-concrete composite girder filled with plain concrete have been being actively performed on the grounds that this type of girder has constructional, structural and aesthetical benefits. As a part of studies on the characteristics of inner shear connections in the concrete-filled steel-concrete composite girder with plain concrete, the confinement effect on the stiffness of inner shear connections was examined in this study. In the case of concrete-filled steel-concrete composite girder, it can be expected that the stiffness of shear connections may be increased in comparison with the case not confined. Therefore, the experimental studies were performed with the confinement effect as a parameter, and the results are discussed in this paper.

  • PDF

A Study on the Fire Cause Analysis of Motor Damage (전동기 소손에 대한 화재 원인 분석에 관한 연구)

  • Lee, Chun-Ha;Ok, Kyung-Jae;Kwon, Byung-Duck
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2007
  • We studied on the fires about the electrical motors in this paper. We compared and analyzed about the transformation and damage state of single-phase induction motors used in the home appliances when we applied electrical overload and exterior flame. This experiment was progressed by the electrical overload application test and the exterior flame application test through the locked rotor of motor. In case of the exterior flame application test, it is divided into the apply voltage case and not apply voltage case. The result of an experiment through the locked rotor of motor, it was able to observe the short-circuit marks between layers at the winding coil parts, and it was appeared a transformed dendritic tissue structure of winding coil by the electrical overload test. The application voltage and the application exterior flame, it was confirmed that the stator winding coil parts were remain original shapes and observed that the color of the winding coil's circumference was changed to red. The non-application voltage and the application exterior flame, it was observed that the stator winding coil parts were transformed quite from original shapes. It was observed that the color of the winding coil and circumference parts was changed to red at the same case of non-application voltage.

Uniaxial Compression Behavior of RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유쉬트로 구속된 RC 기둥의 일축압축 거동)

  • Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.207-216
    • /
    • 2005
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain model is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with square section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio and tie area ratio are considered. Based on the experimental results, a stress-strain model is proposed for concrete confined by CFS wraps. In the development of the model, the method to compute the actual hoop strains in CFS jackets at the rupture was examined and resolved. Overall, the results of the model agree well with test data.

A Study for Control of Thermal Cracking by Heat of Hydration in Subway Concrete Box Structure (지하철 콘크리트 BOX 구조물의 수화열에 의한 온도균열 제어 방안 연구)

  • Song, Suk-Jun;Yoo, Sang-Geon;Park, Ji-Woong;Kim, Eun-Kyum
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1024-1029
    • /
    • 2009
  • According to increase of massive concrete structures, Thermal crack done by heat of hydration have been increased in a process of the execution. In case of a subway concrete box structure, thickness of structures are almost over 1 meter, and penetrating crack by external restraint takes a bad effect on the durability with a water leakage and deterioration in especially concrete wall. A try of shortening a constructing period often occurs as subway is generally constructed according to a road to decrease a traffic jam. The research proposes executing method by skipping one block as a plan of shortening a constructing period and investigate an influence on thermal cracking control. Additionally, sensitivity analysis is accomplished by changing a height of a concrete wall, and concrete placing and air temperature met with a field condition.

Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구)

  • Yeom, Eung-Jun;Kim, Hyun-Jong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • The internally confined hollow-concrete filled tube (ICH-CFT) column has two tubes on the both sides (hollow part and outer part) of the concrete. The inner tube and the outer tube perform great seismic abilities, ductility and absorption of energy due to the steel tubes and the hollow part. So, the study of this column type for the practical use is needed. In this study, the qualitative analysis about seismic capacities depending on parameters is performed for the practical design of the ICH-CFT column. The parameters are diameter of column, hollow ratio and thickness of tubes with the same resistance of the moment. Also, the economical evaluation of ductility and comparison with CFT column make this study to be of practical use. Especially, a change of seismic performance depends on the hollow ratio and the thickness of the outer tube, and the economical hollow ratios according to the thickness of the outer tube in the ICH-CFT column are suggested.

A Study on the Heat Transfer Analysis and Thermal Stress Analysis of Mass Concrete Structure by Finite Element Method (유한요소법을 이용한 매스콘크리트구조물의 수화열 및 온도응력 해석에 관한 연구)

  • 강석화;이용호;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.137-148
    • /
    • 1995
  • In this study, a program for evaluation of heat transfer and thermal stress of mass concrete is developed and verified by 2-experiments (internally and externally restricted). Furthermore, the result of the program is compared with those of ADINA-T and ADINA. As a result of the comparison, the proposed method produces comparable results with those from the popular programs (ADIIVA-T and ADINA) and shows the usefulness of the developed program for the evaluation of thermal stresses of mass concrete in both internally and externally restricted structures.

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.