The Journal of Korean Association of Computer Education
/
v.21
no.4
/
pp.11-20
/
2018
This study is to propose a problem bank of problem solving programming using Online Judge System as one of the ways to motivate learners and increase for immersion to students who take Data Structure lecture that is the basis of problem solving ability using information science. In order to do this, we developed a question bank for each major topic in the Data Structure, by developing 70 problem solving programming problems suitable for the main topics of the Data Structure. By mounting it on an Online Judge System and applying to actual classes, and by analyzing the motivation for learning and the degree of immersion according to the result after the application of the lesson, we propose a teaching-learning contents and usage for problem solving programming and Data Structure classes at the teacher training university which give motivation for learning and immerse in problem solving programming.
Journal of The Korean Association of Information Education
/
v.24
no.4
/
pp.291-300
/
2020
Although the need for international online courses and the number of online learners has been rapidly increasing, the online class evaluation has been mostly relying on the quantitative survey analysis. So a more objective evaluation method has to be developed to more accurately assess online course satisfaction. This study highlights the benefits of using big data analysis from the bulletin board messages of online learning system as a method to evaluate the online courses. In fact, automatic classification technology is recognized as an important technology among big data analysis techniques. Our team applied this technique to evaluate the online courses. From the delphi analysis results, suggested method was concluded that the evaluation items and classification results are suitable for online course evaluation and applicable in schools or institutions. This study has confirmed that the rapidly accumulating big data analysis technology can be successfully applied to the education sector with the least change. It also diagnosed a meaningful possibility to expand the big data analysis for further application.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.221-222
/
2023
본 연구에서는 주피터 노트북에서 자동 평가 시스템을 활용하기 위한 방안으로 자동 평가 시스템의 문제를 저장하고 제시하는 방안에 대해서 연구하였다. 자동 평가 시스템은 학습자가 직접 프로그래밍을 하고 바로 피드백을 받을 수 있는 장점이 있다. 주피터 노트북에서 자동 평가 시스템을 제공하는 nbgrader와 코들의 장점을 바탕으로 문제 제시 방안은 다음과 같다. 문제는 HTML 태그를 이용해 서식 있는 형태로 서버에 저장한다. 주피터 노트북에서 IPython.display 모듈의 display와 HTML 명령어를 사용하여 문제를 출력하면 코드셀 출력창에 서식 있는 HTML 문서를 출력하여 학습자에게 가독성 있게 문제를 제시할 수 있다.
Proceedings of the Korea Association of Information Systems Conference
/
2004.05a
/
pp.109-121
/
2004
현재 오프라인에서 행해지고 있는 거래들을 온라인에서 지원하기 위란 거래 시스템에 대한 연구들이 많이 진행되고 있다. 하지만 이러한 거래 시스템들은 일반적인 상거래, 즉 판매자가 제시한 가격에 구매자가 구매를 하는 고정가격제 거래방식을 지원하는 시스템이 대부분 이었고 판매자와 구매자가 협상을 통해 적절한 가격선을 찾을 수 있도록 지원해 주는 거래 시스템에 대한 연구는 미흡하다. 이러한 자동 협상 시스템은 전자상거래 환경에서의 다양한 환경변화와 복잡한 문제 등에 보다 빠르고 유연하게 대처하고 많은 협상을 일관성있고 효율적으로 수행하기 위해서 필요하다. 본 연구에서는 전자상거래 환경에서 자동으로 협상을 수행하는 자동협상시스템을 개발하였다. 이 시스템은 협상안을 자동으로 생성하고, 또한 상대방의 협상안을 평가하여 Counter 협상안을 작성${\cdot}$전송하거나 Accept 또는 Reject를 할 수 있는 멀티 에이전트 기반 자동협상 시스템이다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.616-618
/
2002
최근 몇 년 동안 이루어진 네트웍 및 인터넷 시장의 발전과 더불어 빈번히 발생하는 시스템에 대한 침입으로 이를 방어하기 위한 여러 도구들이 개발되어왔다. 이러한 도구들 중 침입탐지시스템은 시스템 방어에 핵심적인 역할을 하는데, 현재까지 이를 평가하기 위한 자동화된 온라인 평가도구는 없는 실정이다. 보안관련 시장이 발달한 미국에서는 DARPA의 지원아래 관련된 연구가 진행되어 1998년부터 2000년까지 대규모의 침입탐지시스템 평가가 이루어졌으나, 이때의 평가들은 당시의 침입 수준만을 고려한 것으로 새로운 침입 환경에 대한 확장은 용이하지 않기 때문에, 급속도로 증가하는 침입 기술에 대응하기 위한 새로운 방법이 필요하다. 본 논문에서는 기존 침입코드를 이용하여 새로운 침입을 만들어 내어 침입탐지 평가도구에 적용할 수 있는 모듈 위치변환과 더미코드 삽입을 제안한다. 모듈 위치변환은 알려진 u2r코드를 모듈 단위로 나누고 나뉘어진 모듈의 위치 변환을 통해 새로운 침입을 만들어낸다. 또한 더미코드 삽입은 침입코드의 모듈 사이에 침입과 관련 없이 수행되는 정상 모듈을 삽입하여 새로운 침입을 만든다. 모듈 위치변환을 통해 평균 6.1%의 침입 변환율과 더미코드 삽입을 통해 새로운 침입을 만들었다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.806-808
/
2019
인터넷 기술의 발전에 힘입은 전자상거래의 급격한 발전에 따라 소비자들의 소비습관은 오프라인에서 온라인으로 빠르게 바뀌었다. 이에 따라, 구매한 상품에 대한 평가를 작성하는 것 또한 만연해지면서 소비자들에게 구매 결정의 중요한 요인으로 작용하기 시작하였고 실제 판매량에도 직접적인 영항을 끼치기 시작하였다. 그러나, 현재 전자상거래 시스템에서는 상품에 대한 평가를 한눈에 알아볼 수 있는 기능이 부재하고 있어 소비자의 소비 전략과 판매 전략측면에서의 비효율을 야기하고 있다. 따라서, 본 논문에서는 LSTM 을 기반으로 한 딥러닝 모델을 이용해 감정분석을 하여 온라인 상품평을 긍정/부정에 따라 자동으로 분류하고자 한다. 이를 통해, 효율적인 반응 분석을 위한 기술 개발의 기반을 마련하여 소비자와 판매자 모두에게 더 나아진 전략 수립의 기회를 제공할 것으로 기대한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.499-501
/
2021
Recently, artificial intelligence and SW have occupied an important position worldwide as the foundation technology of the era of the 4th industrial revolution, and web browser-based programming learning systems are becoming common due to changes in the learning environment caused by COVID-19. In accordance with this trend, this paper proposes a functionally scalable microservice-based system structure for an online evaluation system as a tool for learning algorithms that are the basis of artificial intelligence and SW. In addition, a functional structure for applying machine learning to automatic evaluation functions under the proposed system structure is also proposed.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.99-106
/
2009
Over recent decades, concept mapping has been used as a valuable Learning and Teaching tool. A number of studies have shown a positive impact on student learning. One of the disadvantages of this technique has been that assessing them or providing feedback to students is time consuming. We aim here to introduce ways of reducing the complexity of using concept map techniques in online activities. Several types of scoring methods for the concept map based assessment have been developed. In this paper, we describe the development of an automatic assessment system that implements those techniques. We contribute a design that uses semantic web technologies for both the management and the scoring of the concept maps.
With the continuously increasing volume of e-commerce transactions, it is now popular to buy some products and to evaluate them on the World Wide Web. The product reviews are very useful to customers because they can make better decisions based on the indirect experiences obtainable through the reviews. Product Reviews are results expressing customer's sentiments and thus are divided into positive reviews and negative ones. However, as the number of reviews in on-line shopping increases, it is inefficient or sometimes impossible for users to read all the relevant review documents. In this paper, we present a sentiment analysis algorithm for automatically classifying subjective opinions of customer's reviews using opinion mining technology. The proposed algorithm is to focus on product reviews of on-line shopping, and provides summarized results from large product review data by determining whether they are positive or negative. Additionally, this paper introduces an automatic review analysis system implemented based on the proposed algorithm, and also present the experiment results for verifying the efficiency of the algorithm.
With the development of IT convergence technology and the construction of master plan for the four rivers restoration of the government, the importance of the eco-friendly water pollution management is being spotlighted. In this paper, we proposed the effective water pollution management using the reservoir tank automatic classification for improving the water quality and on-line managing efforts of ceo-friendly reservoir tanks. The proposed method defined the seven factors of water pollution evaluation and managed the water pollution according to hydrogen ion concentration(pH), chemical oxygen demand(COD), suspend solid(SS), dissolved oxygen(DO), count of coliform group(MPN), total phosphorus(T-P), and total nitrogen(T-N) using the sensors. We measured the values for the seven factors from the reservoir tank and normalized to ranging from 1 to 9. To evaluate the performance of the water pollution management using the reservoir tank automatic classification, we conducted F-measure so as to verify usefulness. This evaluation found that the difference of satisfaction by the traditional system was statistically meaningful.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.