• Title/Summary/Keyword: 영상 특징추출

Search Result 2,333, Processing Time 0.045 seconds

Moving Object Tracking Method Using Feature Vector (특징 벡터를 이용한 이동 물체 추적)

  • Kim, Se-Jin;Jeon, Hyung-Suk;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1845_1846
    • /
    • 2009
  • 본 논문에서는 특징 벡터를 이용한 강인한 물체 추적 방법을 제안한다. 먼저, 초기 이동 물체의 움직임 영역을 추출하고, KLT알고리즘을 입력 영상에 적용시켜 특징 벡터들을 추출한다. 초기 추출된 이동 물체의 움직임 영역에 추출된 특징 벡터를 적용시켜 1차 정규화 한다. 그 후, RGB 칼라모델과 HSI 칼라모델을 이용하여 이동 물체에 대한 Blob 영역을 설정하고 설정된 Blob 영역에 대해 1차 특징벡터를 Snake 알고리즘으로 동정하여 2차 정규화 과정을 마무리 한다. 최종 정규화 된 특징 벡터를 Particle filter에 입력 데이터로 이용하여 이동 물체를 추적 한다. 마지막으로, 복잡한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

  • PDF

Layer-wise Feature Extraction Capacity using Pre-trained CNN (사전학습된 CNN의 계층별 특징추출능력연구)

  • Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.435-436
    • /
    • 2016
  • 최근 객체인식 분야에서는 Convolutional Neural Network (CNN)이 주목받고 있다. CNN의 특징 중 하나는 입력이미지로 부터 특징 추출 방법을 스스로 학습한다는 것이다. 전통적은 객체인식 방법에서는 hand-written feature extractor를 사용하지만, CNN은 스스로가 특징을 추출한다. 하지만 CNN은 많은 학습데이터와 학습 시간을 필요로 한다. 우리는 객체인식 데이터로 사전학습된 CNN을 사용하여 특징을 추출하였고, 이 특징으로 People re-identification을 수행하였다. 이 과정에서 어떠한 학습도 하지 않았지만 CNN은 다른 영상처리 응용에 대해서도 비교적 좋은 성능을 보여주었다.

  • PDF

Face Recognition using SIFT and Subspace Analysis (SIFT와 부분공간분석법을 활용한 얼굴인식)

  • Kim, Dong-Hyun;Park, Hye-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.390-394
    • /
    • 2010
  • 본 논문에서는 영상인식에서 널리 사용되는 지역적 특징인 SIFT와 부분공간분석에 의한 차원축소방법의 결합을 통하여 얼굴을 인식하는 방법을 제안한다. 기존의 SIFT기반 영상인식 방법에서는 추출된 키 포인트 각각에 대하여 계산된 특징기술자들을 개별적으로 비교하여 얻어지는 유사도를 바탕으로 인식을 수행하는데 반해, 본 논문에서 제안하는 접근법은 SIFT의 특징기술자를 명도 값으로 표현된 얼굴 영상을 여려 변형에 강건한 형태로 표현되도록 변환하는 표현방식으로 본다. SIFT기반의 특징기술자에 의해 표현된 얼굴 영상을 부분공간분석법에 의해 저차원의 특징벡터로 다시 표현되고, 이 특징벡터를 이용하여 얼굴인식을 수행한다. 잘 알려진 벤치마크 데이터인 AR 데이터베이스에 대한 실험을 통해 제안한 방법이 조명 변화와 가려짐에 강인한 인식 결과를 보여줄 뿐 아니라, 기존의 SIFT 기반의 얼굴 인식 방법에 비하여 우수한 처리 속도를 보임을 확인하였다.

  • PDF

Image Processing Using Multiple Valued Neural-Network (다치-신경망을 이용한 화상처리)

  • 정환묵;박미경
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.296-299
    • /
    • 1998
  • 본 논문은 화상처리에 다치를 이용하여 농도처리하는 방법을 제안한다. 화상처리시에 필요한 물체의 농도를 다치로 표현한 후 그 특징을 추출하고, 원영상에 대한 주요 모양 특징들을 구한다. 그리고 다치 신경망을 이용하여 학습을 시킨 후 인식하려고 하는 영상에 대한 정보의 중복성과 인식에 필요한 시간 및 기억공간을 최소화 할 수 있다.

  • PDF

Feature-based Image Stippling (특징 기반의 영상 점묘화 기법)

  • Kim, Dong-Yeon;Son, Min-Jung;Lee, Yun-Jin;Kang, Henry;Lee, Seung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.261-264
    • /
    • 2008
  • 본 논문에서는 영상의 중요한 특징을 강조하는 점의 분포를 가지는 자동화된 점묘화(stippling) 제작 방법을 제시한다. 예술가의 점묘화 일러스트 작품을 살펴보면 영상의 특징을 강조하는 방향성이 있는 점들을 사용해서 회화적인 느낌을 살림과 동시에 사물의 형태를 좀 더 명백히 파악할 수 있게 해준다. 하지만 컴퓨터 그래픽스 분야에서 연구된 기존 점묘화 기법 알고리즘은 입력 영상의 특징적인 형태를 고려하지 않고 색조에 따른 점의 밀도 변화만으로 사물을 표현하기 때문에 사물의 형태가 제대로 드러나지 않는 단점이 있다. 본 방법에서는 점의 분포가 대상의 형태를 반영하며 분포되게 하는 알고리즘을 적용하여 사물의 특징적인 형태를 강조한다. 이를 위해 영상의 특징선으로부터 추출한 특징 흐름(feature flow)을 따라 점을 배치시키는 방법을 사용한다. 그리고 입력 영상의 색조(tone)를 점묘화에 반영하기 위해 점의 크기가 입력 영상의 색조에 따라 자동으로 결정되도록 한다.

  • PDF

A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems (영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1889-1893
    • /
    • 2008
  • This paper explores the classification performance of applying to support vector machines (SVMs) for the image classification problems. In this study, we extract the color, texture and shape features of natural images and compare the performance of image classification using each individual feature and integrated features. The experiment results show that classification accuracy on the basis of color feature is better than that based on texture and shape features and the results of the integrating features also provides a better and more robust performance than individual feature. In additions, we show that the proposed classifier of SVM based approach outperforms BPNN to corporate the image classification problems.

Object Recognition using Multiple Local Features (로컬영역에서 다중 특징을 이용한 물체인식)

  • 최경영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.604-606
    • /
    • 2003
  • 본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.

  • PDF

Image feature extraction for analysis of transitional lung cancer (폐암 변이 분석을 위한 영상 특성 추출)

  • 황해길;최현주;이병일;최흥국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.473-475
    • /
    • 2000
  • 폐암의 변이 형태는 크게 침륜형과 팽창형의 두 가지로 나눌 수 있는데, 팽창형은 암의 크기가 크고 성장속도는 느린 특징을 가지고 있으며, 침륜형은 암의 크기가 작고 성장 속도는 빠르며 괴사 부분이 많고 경계선이 불규칙적인 특성을 가지고 있다. 본 논문은 병리 전문가의 이와 같은 시각적인 진단요소를 폐암 변이 분석을 위한 영상의 특성으로 추출하여, 형태학적 특성과 절감특성으로 분석한 후 의료 영상에 대한 진단을 전문가의 진단 견해와 비교해 보았다. 의료 영상에 대한 진단은 영상의 특성과 함께 전문가의 진단 기준에 대한 특성을 최대한 반영하는 특성에 의한 것이어야 할 것이다.

  • PDF

Image Denoiser Based on Gabor Wavelets and Convolutional Neural Network (가보웨이블릿 특징맵을 입력으로 한 CNN 기반 영상잡음제거기)

  • Kwon, Hyuk Jin;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.106-109
    • /
    • 2019
  • 최근 Convolutional Neural Network (CNN)에 영상이 아닌 비학습적 알고리즘으로부터 도출된 특징맵을 입력함으로써 영상처리 성능 및 계산자원 효율성 향상을 이룬 보고가 늘어나고 있다. 본 논문에서는 이러한 점을 바탕으로 가보웨이블릿 특징맵을 입력으로 하는 CNN 기반 영상잡음제거기를 제안하고 그 성능 및 특징을 고찰하였다. 즉 기존의 CNN 에서는 일반적인 영상을 입력하는 반면에 본 논문에서는 영상으로부터 추출한 웨이블릿 계수들을 입력하였고, 이를 통하여 기존의 방법에 비하여 성능을 유지하면서 계산량을 줄일 수 있는 가능성을 확인하였다.

  • PDF

Classification of Brain MRI Series by using Decision Tree (결정 트리를 이용한 뇌 MRI 시리즈 분류)

  • 김용욱;김준태;엄기현;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1087-1092
    • /
    • 2002
  • 본 논문에서는 결정 트리 학습을 이용하여 뇌 MRI 시리즈를 분류하는 시스템을 제안한다. 영상으로부터 얻을 수 있는 정보에는 두 종류가 있다. 하나는 크기, 색상, 질감, 윤곽선 등 원 영상으로부터 직접 얻을 수 있는 하위레벨(low-level) 특징들이고, 다른 하나는 특정 개체의 존재유무, 여러 부위 사이의 공간적 관계 등 분할된 영상들에 대한 해석을 통하여만 얻을 수 있는 상위레벨(high-level) 특징들이다. 영상을 의미에 따라 분류하기 위해서는 학습 및 분류가 상위레벨 특징들을 기반으로 수행되어야 한다. 제안된 시스템에서는 결정 트리 학습을 이용하여 영상을 구성하는 요소를 학습하고 분류하며 그에 따라 영상 시리즈를 대표할 수 있는 상위레벨 특징을 추출하였다. 정상, 뇌경색, 뇌종양이 있는 뇌 MRI 시리즈에 대하여 분류 실험을 수행하였으며, 그 결과를 설명 하였다.

  • PDF