• Title/Summary/Keyword: 영상 처리

Search Result 9,504, Processing Time 0.048 seconds

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.

A Study on the Perception of Dental Student's about Online Classes Based on Non-face-to-face Education Course (비대면 교육 운영에 따른 온라인수업에 대한 치과대학생의 인식 연구)

  • Hwang, Jae yeon
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.289-297
    • /
    • 2022
  • The purpose of this study was to investigate the perception of dental students based on their experiences of online classes after taking non-face-to-face education courses for all the school semesters in 2020. For the research method, an online survey was conducted on A survey was conducted on 161 dental students enrolled in A University. The analytical method was conducted through frequency analysis, correlation analysis, and multiple regression analysis. The survey analysis findings showed that the satisfaction of dental students' about the non-face-to-face education course was above 4.2, and the detailed items were in the order of the appropriateness of the attendance processing method, satisfaction with recorded video lectures, and the assessment method of the course grade. In the case of the factors that affect the satisfaction of non-face-to-face education courses, the learning system and assessment method were statistically significant. The online class type that is most preferred by the students is recorded video lectures, and the highest number of participants chose 21~30 minutes as the appropriate time for the class content. It is considered that the application of the online system will continue to be used together with face-to-face education courses in the education site and various university-level efforts like systematic support are required to achieve effective learning achievements. This study only investigated the non-face-to-face education operation conditions of A University, so it cannot be generalized to all universities, but it can be used as basic data to provide education curriculum design and supportive measures for the compatibility of face-to-face and non-face-to-face courses.

Infection Control Analysis Research in Angiography Room (혈관조영검사실 감염관리 분석 연구)

  • Kim, Kyung-Wan;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • The purpose of this study was to investigate the status of infection control of angiography room workers through a survey, and to find out their awareness and performance. A survey was conducted from January 3 to February 28, 2022 on 126 workers working in angiography room of 10 hospitals at or above general hospital level located in Busan City. The questionnaire consists of 10 general characteristics of the subject and 56 items in total, divided into 4 main items of infection control in an angiography room: infection control system in a medical institution, personal hygiene, angiography room environment, and angiography room equipment. was measured on a Likert 5-point scale. Data analysis was performed statistically using SPSS for WindowTM release 25.0. t-test and one-way ANOVA were used to analyze the awareness and performance of each domain according to general characteristics, and Pearson correlation analysis was performed for the relationship between variables. As a result, the awareness level was higher than the performance level in all areas, indicating that the performance level was lower than the awareness level. In addition, awareness and performance showed a positive correlation, suggesting that the degree of awareness of workers is an important variable in infection control that has a significant effect on performance. Therefore, for effective and systematic infection control, workers in angiography room must improve the performance of infection control. In order to do that, infection control education is needed, and it is judged that infection control guidelines for angiography room should be systematized in the future.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.

Private Blockchain and Biometric Authentication-based Chronic Disease Management Telemedicine System for Smart Healthcare (스마트 헬스케어를 위한 프라이빗 블록체인과 생체인증기반의 만성질환관리 원격의료시스템)

  • Young-Ae Han;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • As the number of people with chronic diseases increases due to an aging society, it is urgent to prevent and manage their diseases. Although biometric authentication methods and Telemedicine Systems have been introduced to solve these problems, it is difficult to solve the security problem of medical information and personal authentication. Since smart healthcare includes personal medical information of subjects, the security of personal information is the most important field. Therefore, in this paper, we tried to propose a Telemedicine System using a smart wearable device ECG in the form of a wristband and face personal authentication in a private blockchain environment. This system targets various medical personnel and patients with chronic diseases in all regions, and uses a private blockchain that can increase data integrity and transparency, ECG and face authentication that are difficult to forge and alter and have high personal identification to provide a system with high security and reliability. composed. Through this, it is intended to contribute to increasing the efficiency of chronic disease management by focusing on disease prevention and health management for patients with chronic diseases at home.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Data-Driven Technology Portfolio Analysis for Commercialization of Public R&D Outcomes: Case Study of Big Data and Artificial Intelligence Fields (공공연구성과 실용화를 위한 데이터 기반의 기술 포트폴리오 분석: 빅데이터 및 인공지능 분야를 중심으로)

  • Eunji Jeon;Chae Won Lee;Jea-Tek Ryu
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Since small and medium-sized enterprises fell short of the securement of technological competitiveness in the field of big data and artificial intelligence (AI) field-core technologies of the Fourth Industrial Revolution, it is important to strengthen the competitiveness of the overall industry through technology commercialization. In this study, we aimed to propose a priority related to technology transfer and commercialization for practical use of public research results. We utilized public research performance information, improving missing values of 6T classification by deep learning model with an ensemble method. Then, we conducted topic modeling to derive the converging fields of big data and AI. We classified the technology fields into four different segments in the technology portfolio based on technology activity and technology efficiency, estimating the potential of technology commercialization for those fields. We proposed a priority of technology commercialization for 10 detailed technology fields that require long-term investment. Through systematic analysis, active utilization of technology, and efficient technology transfer and commercialization can be promoted.

Efficient Poisoning Attack Defense Techniques Based on Data Augmentation (데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법)

  • So-Eun Jeon;Ji-Won Ock;Min-Jeong Kim;Sa-Ra Hong;Sae-Rom Park;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • Recently, the image processing industry has been activated as deep learning-based technology is introduced in the image recognition and detection field. With the development of deep learning technology, learning model vulnerabilities for adversarial attacks continue to be reported. However, studies on countermeasures against poisoning attacks that inject malicious data during learning are insufficient. The conventional countermeasure against poisoning attacks has a limitation in that it is necessary to perform a separate detection and removal operation by examining the training data each time. Therefore, in this paper, we propose a technique for reducing the attack success rate by applying modifications to the training data and inference data without a separate detection and removal process for the poison data. The One-shot kill poison attack, a clean label poison attack proposed in previous studies, was used as an attack model. The attack performance was confirmed by dividing it into a general attacker and an intelligent attacker according to the attacker's attack strategy. According to the experimental results, when the proposed defense mechanism is applied, the attack success rate can be reduced by up to 65% compared to the conventional method.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.