1 |
Wang, Y., Wang, B., Tu, N., and Geng, J., 2020, Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder, Geophysics, 85(2), V119-V130. https://doi.org/10.1190/geo2018-0699.1
DOI
|
2 |
Naghizadeh, M., and Sacchi, M. D., 2010, On sampling functions and Fourier reconstruction methods, Geophysics, 75(6), WB137-WB151. https://doi.org/10.1190/1.3503577
DOI
|
3 |
Optiz, D., and Maclin, R., 1999, Popular ensemble methods: an empirical study, Journal of AIR, 11, 169-198. https://doi.org/10.1613/jair.614
DOI
|
4 |
Porsani, M. J., 1999, Seismic trace interpolation using half-step prediction filters, Geophysics, 64(5), 1461-1467. https://doi.org/10.1190/1.1444650
DOI
|
5 |
Siahkoohi, A., Kumar, R., and Herrmann, F., 2018, Seismic Data Reconstruction with Genenrative Adversarial Networks, 80th EAGE Conference and Exhibition, 2018, 1-5. https://doi.org/10.3997/2214-4609.201801393
DOI
|
6 |
Wang, B., Zhang, N., Lu, W., and Wang, J., 2019, Deep-learning-based seismic data interpolation: A preliminary result, Geophysics, 84(1), V11-V20. https://doi.org/10.1190/geo2017-0495.1
DOI
|
7 |
Wei, Q., Li, X. Y., and Song, M. P., 2021, De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks, Computer and Geosciences, 154, 1-13. https://doi.org/10.1016/j.cageo.2021.104801
DOI
|
8 |
Bae, W., Kwon, Y., and Ha, W., 2020, Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning, Geophysics and Geophysical Exploration, 23(3), 192-207. https://doi.org/10.7582/GGE.2020.23.3.00192
DOI
|
9 |
Bauer, E., and Kohavi, R., 1999, An empirical comparison of voting classification algorithm: bagging, boosting, and variants, Machine Learning, 36(1-2), 105-142. https://link.springer.com/article/10.1023/A:1007515423169
DOI
|
10 |
Choi, J., Byun, J., and Seol, S. J., 2014, Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing, Geophysics and Geophysical Exploration, 17(2), 88-94. https://doi.org/10.7582/GGE.2014.17.2.088
DOI
|
11 |
Dietterich, T. G., 2000a, An experimental comparison of decision trees: bagging, boosting, and randomization, Machine Learning, 40(2), 139-157. https://link.springer.com/article/10.1023/A:1007607513941
DOI
|
12 |
Xu, S., Zhang, Y., and Lambare, G., 2010, Antileakage Fourier transform for seismic data regularization in higher dimentions, Geophysics, 75, WB113-WB120. https:doi.org/10.1190/1.1993713
DOI
|
13 |
Yang, P., Gao, J., and Chen, W., 2012, Curvelet-based POCS interpolation of nonuniformly sampled seismic records, Journal of Applied Geophysics, 79, 90-99. https://doi.org/10.1016/j.jappgeo.2011.12.004
DOI
|
14 |
Kwak, S., and Kim, H., 2014, Comparison of ensemble pruning methods using Lasso-bagging and WAVE-bagging, Journal of the Korean Data & Information Science Society, 25(6), 1371-1383. https://doi.org/10.7465/jkdi.2014.25.6.1371
DOI
|
15 |
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W., 2017, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Computer Vision and Pattern Recognition, 5, 4681-4690. https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
|
16 |
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., 2004, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transaction on Image Processing, 13(4), 600-612. https://ieeexplore.ieee.org/abstract/document/1284395
DOI
|
17 |
Yang, A. Y., and Suh, J. H., 2003, Applying Spitz Trace Interpolation Algorithm for Seismic Data, Geophysics, 6(4), 171-179. https://koreascience.kr/article/JAKO200307921810193.page
DOI
|
18 |
Arjovsky, M., Chintala, S., and Bottou, L., 2017, Wasserstein Generative Adversarial Networks, Proceedings of the 34th International Conference on Machine Learning, PMLR 70, 214-223. https://proceedings.mlr.press/v70/arjovsky17a.html
|
19 |
Dietterich, T. G., 2000b, Ensemble method in machine learning, LNCS, 1857, 1-15. https://link.springer.com/chapter/10.1007/3-540-45014-9_1
DOI
|
20 |
Lee, B., Yang, J., and Kim, S., 2009, Ensemble Learning of Regional Experts, Journal of KIISE, 15(2), 135-139. https://koreascience.kr/article/JAKO200907841292048.page
|
21 |
Mirza, M., and Osindero, S., 2014, Conditional Generative Adversarial Nets, arXiv preprint arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784
DOI
|
22 |
Ronneberger, O., Fischer, P., and Brox, T., 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention, 9351, 1-8. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
DOI
|
23 |
Spitz, S., 1991, Seismic trace interpolation in the F-X domain, Geophysics, 56(6), 785-794. https://doi.org/10.1190/1.1443096
DOI
|
24 |
Breiman, L., 1996, Bagging predictors, Machine Learning, 24, 123-140. https://link.springer.com/article/10.1007/BF00058655
DOI
|
25 |
Kim, B., Jeong, S., and Byun, J., 2012, Curvelet transform-based POCS in f-k domain, SEG Expanded Abstracts of the 82nd Annual International Meeting, 1-5. https://doi.org/10.1190/segam2012-1063.1
DOI
|
26 |
Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A., 2017, Image-to-Image Translation with Conditional Adversarial Networks, IEEE conference on computer vision and pattern recognition, 1125-1134. https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
|
27 |
Schonewille, M., Klaedtke, A., and Vigner, A., 2009, Anti-alias anti-leakage Fourier transform, SEG Expanded Abstracts of the 79th Annual International Meeting, 3249-3253. https://onepetro.org/SEGAM/proceedings-abstract/SEG09/All-SEG09/SEG-2009-3249/97241
|
28 |
Ji, J. and Choi, Y. G., 2010, 3D Seismic Data Processing Methodology using Public Domain Software System, Geophysics and Geophysical Exploration, 13(2), 159-168. https://koreascience.kr/article/JAKO201026359284114.page
DOI
|
29 |
Liu, B., and Sacchi, M. D., 2004, Minimum weighted norm interpolation of seismic records, Geophysics, 69(6), 1560-1568. https://doi.org/10.1190/1.1836829
DOI
|