• Title/Summary/Keyword: 염소화 반응

Search Result 163, Processing Time 0.023 seconds

Prevalence of Ruminal Lactic Acidosis and Clinical Assessments of Four Therapeutics in Goats of Bangladesh (방글라데시 염소에서 유산증의 분포 및 4가지 치료법의 임상적 적용)

  • Rahman, Md. Mahbubur;Islam, Mohammad Saiful;Adam, G.O.;Alam, Md. Rafiqul;You, Myung-Jo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.199-205
    • /
    • 2014
  • Acidosis conditions either acute or chronic following ingestion of excessive amounts of readily fermented carbohydrate are great production problems for goat in Bangladesh. This study designed to investigate the prevalence of lactic acidosis and then response to different therapeutic agents. For this purpose, 1,128 goat were examined at outdoor District Veterinary Hospital, Faridpur, Bangladseh for treatment of which 40 goats were found positive for lactic acidosis showing 3.55% prevalence of disease. The highest occurrence found in female (4.64%) of over 3 years age (4.64%) in indigenous goat (2.7%). For therapeutic assessment the forty affected goats were divided into four groups A, B, C and D comprising of 10 animals each. Group A were given magnesium hydroxide 8% w/v at 1 g/kg body weight orally. In group B magnesium hydroxide 8% w/v at a dose as group A combination with 7.5% sodium bicarbonate at the rate of 0.9 ml/Kg body weight intravenously administered. Goat in group D were treated with mixture of ginger, nuxvomica, sodium carbonate, cobalt sulphate, dried ferrous sulphate and thiamin mononitrate at the rate of 1 g/kg body weight orally. Goat of group C treated with combination drugs of group A, B and D. The rectal temperature, pulse rate, respiration rate, was performed before and after treatment. It was found that the highest recovery in group C with an average period of $21{\pm}1.8$ hours. It was concluded that lactic acidosis is a common disease of goats and its severity can be effectively reduced by using combination drugs.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

New Antibacterial Peptide Analogs of 5-Aminobenzimidazoles (새로운 펩티드 유사체인 5-aminobenzimidazoles의 합성)

  • Gondal, Humaira Y.;Mashooda, H.;Ali, Muhammad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.650-655
    • /
    • 2011
  • Three new peptide analogs 5a-c were obtained through coupling of 5-Amino benzimidazoles 2a-c with L-phenylalanine. For the purpose ${\alpha}$-amino group was blocked with phthalic anhydride and activation of ${\alpha}$-carboxy group of phenylalanine was carried out by preparing phthaloyl-L-phenylalanyl chloride 4. After developing a successful peptide linkage, the phthaloyl group was removed by treating 5a-c with hydrazine hydrate to get free peptides 6a-c, purified through a column of Amberlite (IR-4B). All of these compounds 2a-c and 5,6a-c have been characterized on the basis of their IR, 1H NMR and EIMS analyses. Antibacterial activity of these compounds is also been reported.

Effect of chloride ions on the catalytic properties of human pancreatic α-amylase isozyme produced in Pichia pastoris (Pichia pastoris에서 생산된 인체 췌장 α-아밀레이스 동질효소의 촉매활성에 대한 염소이온의 영향)

  • Kim, Min-Gyu;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • The AMY2B gene, encoding human pancreatic ${\alpha}$-amylase isozyme (HPA II), was expressed in Pichia pastoris, and the effects of chloride ions on HPA II activity toward starch substrates were investigated. As seen with chloride ion-dependent ${\alpha}$-amylases-including HPA I, the isozyme of HPA II-chloride ions increased enzyme activity and shifted the optimal pH to an alkaline pH. The activity enhancement by chloride was more significant at pH 8 than that at pH 6, suggesting that the protonation state of the general acid/base catalyst of HPA II was important for the hydrolysis of starches at an alkaline pH because of the increase in its $pK_a$ by chloride ions. The turnover values for cereal starches as the substrates markedly increased in the presence of chloride by up to 7.2-fold, whereas that for soluble starch increased by only 1.7-fold. Chloride inhibited substrate hydrolysis at high substrate concentrations, with $K_i$ values ranging from 6 to 15 mg/mL.

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

Re-chlorination facility design to cope with virus intrusion in water distribution system (상수도 관망 내 바이러스 유입 대응을 위한 재염소 시설 설계)

  • Kim, Beomjin;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.277-287
    • /
    • 2024
  • Water distribution system (WDS) is exposed to various water quality incidents during its operation. This study utilized Quantitative Microbial Risk Assessment (QMRA) to analyze the risk associated with potential virus intrusion in WDSs. Additionally, the study determined the location and operation of rechlorination facilities to minimize potential risk. In addition, water quality resilience was calculated to confirm that the chlorine concentration maintains within the target range (0.1-1.0 mg/L) during normal operation. Hydraulic analysis was performed using EPANET, while EPANET-MSX was linked to simulate the reactions between viruses and chlorine. The proposed methodology was applied to the Bellingham network in the United States, where rechlorination facilities capable of injecting chlorine concentrations ranging from 0.5 mg/L to 1.0 mg/L were considered. Results indicated that without rechlorination facilities, the Average risk was 0.0154. However, installing rechlorination facilities and injecting chlorine at a concentration of 1.0 mg/L could reduce the Average risk to 39.1%. It was observed that excessive chlorine injection through rechlorination facilities reduced water quality resilience. Consequently, a rechlorination facility with a concentration of 0.5 mg/L was selected, resulting in a reduction of approximately 20% in average risk. This study provides insights for designing rechlorination facilities to enhance preparedness against potential virus ingress in the future.

Reductive degradation of Chlorinated compounds by using Iron Minerals (철 광물에 의한 염소계 유기화합물의 환원적분해)

  • Kim, Sung-Kuk;Park, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.11-19
    • /
    • 2004
  • Chlorinated and nitroaromatic compounds are non-degradable substances that are extremely toxic and are known to be carcinogens and mutation causing agents. Moreover, the half-lives of substances such as carbon tetrachloride, hexachloroethane and nitroaromatic compounds are several decades. In this study, the optimal conditions to detoxify chlorinated compounds by the reductive degradation were investigated. The following results were obtained in the reductive degradation of CCl$_4$, C$_2$Cl$\_$6/, C$_2$HCl$\_$5/, C$_2$Cl$_4$, and C$_2$HCl$\_$5/ by using Fe, FeS and FeS$_2$ as mediators. CCl$_4$ was reduced to CH$_2$Cl$_3$ and CH$_2$Cl$_2$in anaerobic conditions when FeS was used as a mediator. While the reduction of CCl$_4$ to CHCl$_3$ was rapidly proceeded, the reduction of CHCl$_3$ to CH$_2$Cl$_2$ was occurred slowly. Further reduction to CH$_3$Cl was not observed. Unlike CCl$_4$, C$_2$Cl$\_$6/ was degraded to C$_2$HCl$\_$5/, C$_2$Cl$_4$. C$_2$HCl$_3$ and cis-1,2-C$_2$H$_2$Cl$_2$ by complicated pathways such as hydrogenolysis, dehalo-elimination and dehydrohalogenation. A small amount of C$_2$HCl$\_$5/ was detected only in the early stages of the reduction. However, majority of the C$_2$Cl$\_$6/ was reduced to C$_2$Cl$_4$. cis-1,2-C$_2$H$_2$C1$_2$ was the only product among other possible isomers.

반응염료의 현황과 문제점

  • 김공주
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.77-91
    • /
    • 1994
  • 1956년 반응염료가 시판된 이래 장족의 발전을 하였으며, 구형의 cellulose용 염색을 추월하여 거의 대부분의 cellulose의 염색에 반응염료, 일변도로 사용되고 있는 것이 현실이다. 그러나 많은 반응 염료의 장점에도 불구하고 세월이 가면서 문제점도 만만치 않다. 장점으로는 색상이 선명하고 견뢰도가 우수하고 응용범위가 넓고 조작이 용이하다는 점이며, 문제점으로 나타난 것은 흡착염색공정에서 다량의 전해질과 알칼리제를 첨가함에도 불구하고 흡착율, 고착율이 낮고 염색후의 세정공정과 많은 물과 energy 및 시간을 필요로 한다는 사실이다. 또한 최근 더욱 관심을 끈 것은 반응염료의 가수분해 현상으로 인하여 다량의 가수분해된 염료가 폐수화하여 버려짐으써 심각한 공해가 야기할 뿐만 아니라 염색물에 부착하여 견뢰도에도 영향이 많다. 이런 문제를 염료제조업계에서는 해결하지 않으면 안될 시점에 와 있다. 이와 같은 문제점을 염료의 구조적인 면, 염색적인 면 그리고 소비자의 취급적인 면에서 검토하여 과거의 영광을 존속하기 위하여 개량형의 염료를 합성하여 고고착률, wash-off성의 양호 및 일광, 염소, 땀, 세탁 등에 견뢰한 염료를 얻고자 반응염료의 현황과 문제점을 정리해 보고자 한다.

  • PDF

Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction (염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰)

  • Lee, Bon Su;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.223-238
    • /
    • 1974
  • CNDO/2 MO theoretical studies and kinetic studies of halide exchange reactions for alkylchloroformates have been carried out in order to investigate structure-reactivity relationship of alkylchloroformates. From the result of energetics, it was concluded that the most stable configuration of alkylchloroformate is that in which alkyl group and chlorine are trans to each other, and that the hindered rotation about the bond between the carbonyl carbon and alkoxy-oxygen bond is attributed to the ${\pi}-$electron delocalization. It has been found that the large charge separation is due to -M effect of carbonyl and alkoxy oxygens and-I effect of chlorine. The order of rates in solvents studied was $(CH_3)_2 > CO > CH_3CN{\gg}MeOH.$$I^->Br^->Cl^-$ in protic solvent, and of Cl^->Br^- >I^-$ in dipolar aprotic solvents. Alkyl group contribution has the decreasing order of $CH_3-> C_2H-{\gg}i-C_3H_7-.$ The solvent effect has been interpreted on the basis of initial and final state contribution. A transition state model has been suggested, and it has been proposed that the most favorable mechanism is the addition-elimination. From the results of activation parameters and electronic properties, an energy profile has been proposed. Structural factors determining reactivities of alkylchloroformates have been shown to be charge, energy level of ${\alpha}^*LUMO$ to C-Cl bond and ${\alpha}^{\ast} $antibonding strength with respect to C-Cl bond in this MO. Charge and polarizability of nucleophile, and the interaction of these effects with solvent structures are also found to be important.

  • PDF

Time-related Histopathologic Changes of Fresh Frozen Vascular Xenograft in Pig-to-goat Model (돼지-염소 모델에서 신선 동결된 이종 경동맥 이식편의 시간 경과에 따른 조직병리학적 변화)

  • Chang, Ji-Min;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.40 no.3 s.272
    • /
    • pp.180-192
    • /
    • 2007
  • Background: As determined from the recent investigations of discordant cardiac xenotransplantation, hyperacute rejection occurs mainly at the endothelial cells in donor microvascular systems, but this does not occur at cardiac valve leaflets or at medium-to-large caliber vessels. On the basis of this background, this study was performed to look into the biocompatibility for transplantation of a middle or large diameter xenogenic blood vessel by conducting xenogenic arterial transplantation with the carotid artery in a pig-to-goat model. Material and Method: The experimental group was composed of 10 pairs of pig-to-goat combinations. They were divided into each period of 1 week, and 1, 3, 6 and 12 months. Four carotid artery grafts obtained through collection of the bilateral carotid arteries from two pigs were preserved at $-70^{\circ}C$ without other treatment, and then they were transplanted into the bilateral carotid arteries of two goats. Doppler ultrasonography was done on a periodic basis after transplantation to evaluate the patency of the grafted blood vessel. At the ends of a predetermined period, the grafts were explanted from the goats and they underwent gross examination. Hematoxylin-eosin and Masson's trichrome staining were conducted. In addition, in order to examine the immunological rejection of the grafted xenogenic blood vessel, immunohistochemical staining was conducted with T-lymphocyte indicator and von Willebrand factor. Result: Two goats at the each one-week period and the one-year period died during the experimental period because of a reason unrelated to the experimental procedure, and the remaining 8 goats survived until the end of each experiment period. On Doppler ultrasonography, unilateral carotid artery occlusion was found in a goat, whose period was specified as 3 months, among the 8 survived goats. However, the vascular patency was maintained well and there was no graft that formed aneurysms in the other goats. On gross examination, the region of vascular anastomosis was preserved well, and calcification of the grafted blood vessel was not shown. Histologically, the endothelial cells of the graft disappeared one week after transplantation, and then there was progressive spread of the recipients' endothelial cells from the anastomotic site. The reendothelialization occurred over the whole graft at one month after transplantation. The neointimal thickening and adventitial inflammation became severe by 3 months after transplantation, but this lessened at 6 months and 12 months, respectively. The rate of CD3 positive cells was very low among the infiltrated inflammatory cells. Conclusion: The fresh-frozen xenogenic artery kept its patency without being greatly influenced by xenogenic immune reaction.