DOI QR코드

DOI QR Code

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder

음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성

  • Lee, Yun-Su (Department of Architectural Engineering, Hanyang University) ;
  • Lim, Seung-Min (Department of Architecture, Kangwon National University) ;
  • Park, Jang-Hyun (Department of Architectural Engineering, Hanyang University) ;
  • Jung, Do-Hyun (Department of Architectural Engineering, Hanyang University) ;
  • Lee, Han-Seung (School of Architectural & Architecture Engineering, Hanyang University ERICA)
  • Received : 2019.11.26
  • Accepted : 2020.01.10
  • Published : 2020.02.20

Abstract

Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

외부로부터 시멘트 복합체 내부로 침투되는 염소이온은 주로 농도차로 인한 확산을 통해 이동한다. 확산하는 염소이온 중 일부는 일반적으로 내부 수화물과의 반응을 통해 고정되는데, 최근의 몇몇 연구는 음이온 교환 수지(AER) 분말이 혼입된 시멘트 복합체의 염소이온 침투 저항성 및 고정능력에 관한 연구결과를 보여주었다. 본 연구에서는 AER이 분쇄되는 과정에서 염소이온 흡착능력이 상실하는지를 확인하고자 한다. AER 분말의 염소이온 흡착능력은 증류수와 포화수산화칼슘 수용액 조건에서 분석되었고, AER 비드의 염소 이온 흡착능력에 관한 기존의 연구결과와 비교되었다. 추가로, AER 분말이 포틀랜드 시멘트의 일부 치환된 모르타르의 압축강도 측정, 염소이온 확산계수 도출(NT Build 492 시험방법 이용), 염소이온 침투 프로파일링(전자현미분석 이용)을 수행하였다. 본 연구의 실험 결과는 분쇄과정으로 인한 AER 분말의 염소이온 흡착능력 저하가 거의 없음을 보여 주었다. 그리고 AER 분말은 모르타르 내에서도 염소이온을 빠르게 흡착할 수 있었고, 시멘트 수화물보다 우수한 염소이온 흡착성능을 보여주었다.

Keywords

References

  1. Angst U, Elsener B, Larsen CK, Vennesland O. Critical chloride content in reinforced concrete-a review. Cement and Concrete Research. 2009 Dec;39(12):1122-38. https://doi.org/10.1016/j.cemconres.2009.08.006
  2. Monteiro P. Concrete: Microstructure, properties, and materials. McGraw-Hill Publishing; 2006. p. 125-130.
  3. Zhang Mh, Li H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and Building Materials. 2011 Feb;25(2):608-16. https://doi.org/10.1016/j.conbuildmat.2010.07.032
  4. Zhang M, Ye G, Van Breugel K. Microstructure-based modeling of water diffusivity in cement paste. Construction and Building Materials. 2011 Apr;25(4):2046-52. https://doi.org/10.1016/j.conbuildmat.2010.11.042
  5. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D. Chloride binding of cement-based materials subjected to external chloride environment-a review. Construction and Building Materials. 2009 Jan;23(1):1-13. http://doi.org/10.1016/j.conbuildmat.2008.02.004
  6. Florea M, Brouwers H. Chloride binding related to hydration products: Part i: Ordinary portland cement. Cement and Concrete Research. 2012 Feb;42(2):282-90. https://doi.org/10.1016/j.cemconres.2011.09.016
  7. Rives V, Ulibarri MA. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews. 1999 Jan;181 (1):61-120. https://doi.org/10.1016/S0010-8545(98)00216-1
  8. Matschei T, Lothenbach B, Glasser F. The AFm phase in portland cement. Cement and Concrete Research. 2007 Feb;37(2): 118-30. http://doi.org/10.1016/j.cemconres.2006.10.010
  9. Balonis M, Lothenbach B, Le Saout G, Glasser FP. Impact of chloride on the mineralogy of hydrated portland cement systems. Cement and Concrete Research. 2010 Jul;40(7):1009-22. http://doi.org/10.1016/j.cemconres.2010.03.002
  10. Lee YS, Lee HS, Jung DH, Chen Z, Lim SM. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar. Materials. 2018 Apr;11(4):560. https://www.mdpi.com/1996-1944/11/4/560 https://doi.org/10.3390/ma11040560
  11. Li J, Wang J. Advances in cement solidification technology for waste radioactive ion exchange resins: A review. Journal of hazardous materials. 2006 Jul;135(1-3):443-8. https://doi.org/10.1016/j.jhazmat.2005.11.053
  12. Wang J, Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy. 2015 Jan;78:47-55. https://doi.org/10.1016/j.pnucene.2014.08.003
  13. Luan Y, Sanada O, Mutsuyoshi H. Experimental Study of Chloride Diffusion Properties of Mortar Mixed with Ion-Exchange Resin. ACI Materials Journal. 2018 Sep;115(5):785-94. http://dx.doi.org/10.14359/51706845
  14. Zhao P, Zhou L, Bai M, Feng L, Jing M, Wang Z, Zhang Y. Improving chloride ion penetration resistance of cement mortar by strong base anion exchange resin. Construction and Building Materials. 2019 Nov;226(30):483-91. http://doi.org/10.1016/j.conbuildmat.2019.07.282
  15. Azizian S. Kinetic models of sorption: A theoretical analysis. Journal of colloid and Interface Science. 2004 Aug;276(1):47-52. http://doi.org/10.1016/j.jcis.2004.03.048
  16. Simonin JP. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal. 2016 Sep;300(15):54-63. http://doi.org/10.1016/j.cej.2016.04.079
  17. Lee IH, Kuan YC, Chern JM. Equilibrium and kinetics of heavy metal ion exchange. Journal of the Chinese Institute of Chemical Engineers. 2007 Jan;38(1):71-84. http://doi.org/10.1016/j.jcice.2006.11.001
  18. Wong CW, Barford JP, Chen G, McKay G. Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering. 2014 Mar;2(1):698-707. http://doi.org/10.1016/j.jece.2013.11.010
  19. ASTM International. ASTM C109/C109M-16a - Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) [Internet]. 2016 [approved 2016 Mar 1]. Available from: https://www.astm.org
  20. Nordtest. NT BUILD 492 - Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments [Internet]. 1999 [approved 1999 Nov]. Available from:https://www.nordtest.info
  21. Rivero EP, Ortega A, Cruz-Díaz MR, Gonzalez I. Modelling the transport of ions and electrochemical regeneration of the resin in a hybrid ion exchange/ electrodialysis process for As (V) removal. Journal of Applied Electrochemistry. 2018 Jun;48 (6):597-610. http://doi.org/10.1007/s10800-018-1191-5
  22. Darracq G, Baron J, Joyeux M. Kinetic and isotherm studies on perchlorate sorption by ion-exchange resins in drinking water treatment. Journal of Water Process Engineering. 2014 Sep;3:123-31. http://doi.org/10.1016/j.jwpe.2014.06.002
  23. Berger AH, Bhown AS. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia. 2011 Apr;4:562-7. http://doi.org/10.1016/j.egypro.2011.01.089
  24. Luping T, Nilsson LO. Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and concrete research. 1993 Mar;23(2):247-53. http://doi.org/10.1016/0008-8846(93)90089-R
  25. Miller WS, Castagna CJ, Pieper AW. Understanding ion-exchange resins for water treatment systems. GE Water Process Technologies; 2018. p. 1-13.
  26. Lee SH, Kwon SJ. Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength. Journal of the Korea Concrete institute. 2012 Dec;24(6):715-26. http://doi.org/10.4334/JKCI.2012.24.6.715
  27. Park DC, Kim YR. The Chloride Ion Diffusivity of Ready-Mixed Concrete Depending on Specified Compressive Strength. Journal of the Korea Institute of Building Construction. 2018 Dec;18(6):543-50. http://doi.org/10.5345/JKIBC.2018.18.6.543