References
- Angst U, Elsener B, Larsen CK, Vennesland O. Critical chloride content in reinforced concrete-a review. Cement and Concrete Research. 2009 Dec;39(12):1122-38. https://doi.org/10.1016/j.cemconres.2009.08.006
- Monteiro P. Concrete: Microstructure, properties, and materials. McGraw-Hill Publishing; 2006. p. 125-130.
- Zhang Mh, Li H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and Building Materials. 2011 Feb;25(2):608-16. https://doi.org/10.1016/j.conbuildmat.2010.07.032
- Zhang M, Ye G, Van Breugel K. Microstructure-based modeling of water diffusivity in cement paste. Construction and Building Materials. 2011 Apr;25(4):2046-52. https://doi.org/10.1016/j.conbuildmat.2010.11.042
- Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D. Chloride binding of cement-based materials subjected to external chloride environment-a review. Construction and Building Materials. 2009 Jan;23(1):1-13. http://doi.org/10.1016/j.conbuildmat.2008.02.004
- Florea M, Brouwers H. Chloride binding related to hydration products: Part i: Ordinary portland cement. Cement and Concrete Research. 2012 Feb;42(2):282-90. https://doi.org/10.1016/j.cemconres.2011.09.016
- Rives V, Ulibarri MA. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews. 1999 Jan;181 (1):61-120. https://doi.org/10.1016/S0010-8545(98)00216-1
- Matschei T, Lothenbach B, Glasser F. The AFm phase in portland cement. Cement and Concrete Research. 2007 Feb;37(2): 118-30. http://doi.org/10.1016/j.cemconres.2006.10.010
- Balonis M, Lothenbach B, Le Saout G, Glasser FP. Impact of chloride on the mineralogy of hydrated portland cement systems. Cement and Concrete Research. 2010 Jul;40(7):1009-22. http://doi.org/10.1016/j.cemconres.2010.03.002
- Lee YS, Lee HS, Jung DH, Chen Z, Lim SM. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar. Materials. 2018 Apr;11(4):560. https://www.mdpi.com/1996-1944/11/4/560 https://doi.org/10.3390/ma11040560
- Li J, Wang J. Advances in cement solidification technology for waste radioactive ion exchange resins: A review. Journal of hazardous materials. 2006 Jul;135(1-3):443-8. https://doi.org/10.1016/j.jhazmat.2005.11.053
- Wang J, Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy. 2015 Jan;78:47-55. https://doi.org/10.1016/j.pnucene.2014.08.003
- Luan Y, Sanada O, Mutsuyoshi H. Experimental Study of Chloride Diffusion Properties of Mortar Mixed with Ion-Exchange Resin. ACI Materials Journal. 2018 Sep;115(5):785-94. http://dx.doi.org/10.14359/51706845
- Zhao P, Zhou L, Bai M, Feng L, Jing M, Wang Z, Zhang Y. Improving chloride ion penetration resistance of cement mortar by strong base anion exchange resin. Construction and Building Materials. 2019 Nov;226(30):483-91. http://doi.org/10.1016/j.conbuildmat.2019.07.282
- Azizian S. Kinetic models of sorption: A theoretical analysis. Journal of colloid and Interface Science. 2004 Aug;276(1):47-52. http://doi.org/10.1016/j.jcis.2004.03.048
- Simonin JP. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal. 2016 Sep;300(15):54-63. http://doi.org/10.1016/j.cej.2016.04.079
- Lee IH, Kuan YC, Chern JM. Equilibrium and kinetics of heavy metal ion exchange. Journal of the Chinese Institute of Chemical Engineers. 2007 Jan;38(1):71-84. http://doi.org/10.1016/j.jcice.2006.11.001
- Wong CW, Barford JP, Chen G, McKay G. Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering. 2014 Mar;2(1):698-707. http://doi.org/10.1016/j.jece.2013.11.010
- ASTM International. ASTM C109/C109M-16a - Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) [Internet]. 2016 [approved 2016 Mar 1]. Available from: https://www.astm.org
- Nordtest. NT BUILD 492 - Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments [Internet]. 1999 [approved 1999 Nov]. Available from:https://www.nordtest.info
- Rivero EP, Ortega A, Cruz-Díaz MR, Gonzalez I. Modelling the transport of ions and electrochemical regeneration of the resin in a hybrid ion exchange/ electrodialysis process for As (V) removal. Journal of Applied Electrochemistry. 2018 Jun;48 (6):597-610. http://doi.org/10.1007/s10800-018-1191-5
- Darracq G, Baron J, Joyeux M. Kinetic and isotherm studies on perchlorate sorption by ion-exchange resins in drinking water treatment. Journal of Water Process Engineering. 2014 Sep;3:123-31. http://doi.org/10.1016/j.jwpe.2014.06.002
- Berger AH, Bhown AS. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia. 2011 Apr;4:562-7. http://doi.org/10.1016/j.egypro.2011.01.089
- Luping T, Nilsson LO. Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and concrete research. 1993 Mar;23(2):247-53. http://doi.org/10.1016/0008-8846(93)90089-R
- Miller WS, Castagna CJ, Pieper AW. Understanding ion-exchange resins for water treatment systems. GE Water Process Technologies; 2018. p. 1-13.
- Lee SH, Kwon SJ. Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength. Journal of the Korea Concrete institute. 2012 Dec;24(6):715-26. http://doi.org/10.4334/JKCI.2012.24.6.715
- Park DC, Kim YR. The Chloride Ion Diffusivity of Ready-Mixed Concrete Depending on Specified Compressive Strength. Journal of the Korea Institute of Building Construction. 2018 Dec;18(6):543-50. http://doi.org/10.5345/JKIBC.2018.18.6.543