Browse > Article
http://dx.doi.org/10.4334/JKCI.2017.29.1.065

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases  

Yoon, In-Seok (Dept. of Construction Info. Eng., Induk University)
Publication Information
Journal of the Korea Concrete Institute / v.29, no.1, 2017 , pp. 65-75 More about this Journal
Abstract
C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.
Keywords
physical adsorption; chemical adsorption; chloride binding; C-S-H phase; electro-kinetic reaction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gard, J. A., and Taylor, H. F. W., "Calcium Silicate Hydrate (II) ("C-S-H(II)")", Cement and Concrete Research, Vol. 6, 1976, pp. 667-678.   DOI
2 Yasuo, A., "Cement Materials Chemistry", Revised Edition, 1990.
3 Rasheeduzzafar., "Influence of Cement Composition on Concrete Durability", ACI Materials Journal, Vol. 89, No. 6, 1992, pp. 574-585.
4 Ramachandran, V. S., "Possible State of Chloride in the Hydration of Tricalcium Silicate in the Presence of Calcium Chloride", Material and Structure, Vol. 4, No. 1, 1971, pp. 3-12.
5 Tang, L., and Nilsson, L-O., "Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortar", Cement and Concrete Research, Vol. 23, No. 2, 1993, pp. 247-253.   DOI
6 Yoon, I. S., "Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates", Journal of the Korea Concrete Institute, Vol. 27, No. 1, 2015, pp. 85-92.   DOI
7 Hirao, H., Yamada, K., Takahashi, H., and Zibra, H., "Chloride Binding of Cement Estimated by Binding Isotherm of Hydrates", Journal of Advanced Concrete Technology, Vol. 3, No. 1, 2005, pp. 77-84.   DOI
8 Powders, T. C., "Structure and Physical Properties of Hardened Portland Cement Paste", Journal of the American Ceramic Society, Vol. 41, 1958, pp. 1-6.
9 Feldman, R. F., and Sereda, P. J., "A Model for Hydrated Portland Cement Paste as Deduced from Sorption-Length Change and Mechanical Properties", Materials and Structures, Vol. 1, No. 6, 1968, pp. 50-520.
10 Wittman, F. H., "Trends in Research on Creep and Shrinkage of Concrete", Cement Production and Use, New Hampshire, 1979, pp. 143-161.
11 Jennings, H. M., "Model for the Developing Microstructure in Portland Cement Pastes", Cement and Concrete Research, Vol. 30, 2000, pp. 101-116.   DOI
12 Lu, P., Sun, G., and Young, J. F., "Phase Composition of Hydrated DSP Cement Paste", Journal of American Ceramic Society, Vol. 76, 1973, pp. 1003-1007.
13 Yoon, I. S., "Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement", Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 367-375.   DOI
14 Hosokawa, Y., Yamada, K., Johannesson, B. F., and Nilsson, L.-O., "Reproduction of Chloride Ion Binding in Hardened Cement Paste Using Thermodynamic Equilibrium Models", Taiheiyo Cement Kenkyu Hokoku, Japan, 151, 2005, pp. 1-12.
15 Yamaguchi, G., and Takagi, S., "The Anlaysis of Portland Cement Clinker", Proceedings of the 5th international Symposium on the Chemistry of Cement, 1, Japan, 1969, pp. 181-218.
16 Brouwers, H. J. H., "The Work of Powders and Brownyard Revisited: Part I", Cement and Concrete Research, Vol. 34, 2004, pp. 1697-1716.   DOI
17 Garbev, K. Bornefeld, M., Beuchle, G., and Stemmermann, P., "Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions, Part 2: X-Ray and Thermogravimetry Study", Journal of American Ceramic Society, Vol. 91, 2008, pp. 3015-3023.   DOI
18 Brunauer, S., and Greenberg, S. A., "The Hydration of Tricalcium Silicate and Beta-Dicalcium Silicate at Room Temperature", National Bureau of Standards, Washington, DC, 1960.
19 Thomas, J. J., Jennings, H. M., and Allen, A. J. "Relationships between Composition and Density of Tobermorite, Jennite, and Nanoscale CaO-$SiO_2-H_2O$", The Journal of Physical Chemistry, Vol. 114, No. 17, 2010, pp. 7594-7601.
20 Taylor, H. F. W., "Cement Chemistry", 2nd Edition, Thomas Telford, London, 1997.
21 Richardson, I., and Groves, G. W., "Model Structure for C-(A)-S-H (I)", Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, Vol. 70, 2014, pp. 903-923.   DOI
22 Fujii, K., and Kondo, W., "Estimation of Thermochemical Data for Calcium Silicate Hydrate(C-S-H)", Journal of the American Ceramic Society, Vol. 66, 1983, pp. C-220-221.
23 Brouwers, H. J. H, "The Work of Powers and Brownyard Revisited: Part 1", Cement and Concrete Research, Vol. 34, pp. 1697-1716.
24 Taylor, H. F. W., "Studies on the Chemistry and Microstructure of Cement Pastes", British Ceramic Prodceedings, Vol. 35, 1985, pp. 65-82.
25 Zibara, H., Hooton, R. D., Thomas, M. D. A., and Stanish K., "Influence of the C/S and C/A Ratios of Hydration Products on the Chloride Ion Binding Capacity of Lime-SF and Lime-MK Mixtures", Cement and Concrete Research, Vol. 38, 2008, pp. 422-426.   DOI
26 Sugiyama, D, "Chemical Alteration of Calcium Silicate Hydrate (C-S-H) in Sodium Chloride Solution", Cement and Concrete Research, Vol. 38, No. 11, 2008, pp. 1270-1275.   DOI
27 Nielsen, E. P., "The Durability of White Portland Cement to Chemical Attack", PhD Thesis, Technical University of Denmark, Report No. R-84, 2004.
28 Beaudoin, J. J., Ramachandran, V. S., and Feldman, R. F., "Interaction of Chloride and C-S-H", Cement and Concrete Research, Vol. 20, No. 6, pp. 875-883, 1990.   DOI
29 Yoon, S., Ha, J., Chae, S. R., Kilcyne, D. A., and Monteiro P. J. M., "X-Ray Spectromicroscopic Study of Interactions between NaCl and Calcium Silicate Hydrates", Magazine of Concrete Research, Vol. 66, No. 3, 2014, pp. 141-149.   DOI
30 Nagataki, S., Otsuki, N., Wee, T. H., and Natashita, K., "Condensation of Chloride Ion in Hardened Cement Matrix Materials and on Embedded Steel Bars", ACI Materials Journal, Vol. 90, No. 4, 1993, pp. 323-332.
31 Elakneswaran, Y., and Nawa, T., and Kurumisawa, K., "Electrokinetic Potential of Hydrated Cement in Relation to Adsorption of Chlorides", Cement and Concrete Research, Vol. 39, 2009, pp. 340-344.   DOI
32 Richardson, G., "Tobermorite / Jennite and Tobermorite / Calcium Hydroxide - Based Models for Structure of C-S-H: Application to Hardened Paste of Tricalcium Silicate, ${\beta}$-Dicalcium Silicate, Portand Cement, and Blends of Portland Cement with Blast Furnace Slag, Metakaoloin, or Silicate", Cement and Concrete Research, Vol. 34, No. 9, 2004, pp. 1733-1777.   DOI
33 Termkhajornkit, P., Nawa, T., Fujisawa, J., and Minato, D., "Influence of Fly Ash Replacement Ratio on Composites of C-S-H Gels, Proceedings of JCI, Vol. 28, No. 1, 2006, pp. 281-286.
34 Heath, T. G., and Tweed, C. J., "Thermodynamic Modeling of the Sorption of Radioelements onto Cementitious Materials", Materials Research Society Symposium Proceedings, No. 412, 1996, pp. 58-65.
35 Pointeau, I., Reiller, P., and Mace, N., "Measurement and Modeling of the Surface Potential Evaluation of Hydrated Cement Pastes as a Function of Degradation", Journal of Colloid and Interface Science, Vol. 300, 2006, pp. 33-44.   DOI
36 Vallis-Terasse, H., Nonat, A., and Petit, J. C., "Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations", Journal of Colloid and Interface Science, Vol. 244, 2001, pp. 58-65.   DOI
37 Sellevold, E. J., and Nilsen, T., "Condensed Silica Fume in Concrete: A World Review", Malhotra, V.M.(eds.), Supplementary Cementing Materials for Concrete, Ottawa, CANMET SP-86-8E, 1987, pp. 165-243.