• Title/Summary/Keyword: 염료 감응형 태양전지

Search Result 293, Processing Time 0.032 seconds

Electrochemical Impedance Spectroscopy Analysis on the Dye-sensitized Solar Cell with Different $TiO_2$ thicknesses ($TiO_2$ 두께에 따른 염료감응형 태양전지의 전기화학적 임피던스 분석)

  • Kim, Hee-Je;Lee, Jeong-Gee;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Jin-Kyoung;Prabalkar, K.;Shin, In-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2425-2430
    • /
    • 2009
  • Dye-sensitized solar cell(DSC) is composed of a dye-adsorbed nanoporous $TiO_2$ layer on fluorine-doped tin oxide(FTO) glass substrate, electrolyte, and platinium doped counter electrode. Among these, a dye-absorbed nanoporous $TiO_2$ layer plays an important role in the performance of the DSC because the injected electrons from excited dye molecules move through this layer. And the condition of $TiO_2$ layer such as the morphology and thickness affects on the electron movement. Therefore, the performances and the efficiency of DSC change as the thickness of $TiO_2$ layer is different. Electrochemical Impedance Spectroscopy(EIS) is the powerful analysis method to study the kinetics of electrochemical and photoelectrochemical processes occurring in the DSC especially the injected electron movements. So we analyzed the DSCs with different $TiO_2$ thicknesses by using EIS to understand the influence of the $TiO_2$ thickness to the performance of the DSC clearly. Finally, we got the EIS analysis on the DSC with different $TiO_2$ thickness from the internal resistance of the DSC, the electron life time and the amount of dye molecules.

Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유)

  • An, Hye Lan;Kang, Hye-Rhin;Sun, Hyo Jeong;Han, Ji Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.672-677
    • /
    • 2015
  • Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells (저비용 염료감응 태양전지를 위한 방추형 Fe2O3 나노입자가 코팅된 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;An, HyeLan;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells (염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향)

  • Han, Young-Moon;Hwang, Sook-Hyun;Kang, Myung-Hoon;Kim, Young-Joo;Kim, Hyun-Kook;Kim, Sang-Hyo;Bae, Hyo-Jun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

The Enhancement of the Performance of Dye Sensitized Solar Cells Using Nb2O5-TiO2 Compound (Nb2O5-TiO2 화합물을 이용한 염료감응형 태양전지의 성능 향상)

  • Choi, Seok-Won;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Hee-Je;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1153-1158
    • /
    • 2012
  • Niobium oxide ($Nb_2O_5$) has a strong chemical coherence and good electrical conductivity. Therefore, this material is helpful to enhance the performance of the dye sensitized solar cells (DSC) by improving the electron mobility. In this study, $Nb_2O_5$ was mixed with $TiO_2$ and this compound was applied to the DSC to improve its performance. As a result, the current density of the DSC using the $Nb_2O_5-TiO_2$ compound on the photoelectrode was increased, because the internal resistance concerned to the electron transfer in the photoelectrode of DSC was decreased. However, large amount of the $Nb_2O_5$ induces the decrease of the efficiency of the DSC because the surface area to attach dye molecules is decreased due to the large particle of $Nb_2O_5$. Therefore, it is important to optimize the mixture ratio of the $Nb_2O_5-TiO_2$ compound for maximizing the performance of the DSC. Finally, the most optimum performance of the DSC was shown in case of the $Nb_2O_5$ concentration of 10 wt% of the $Nb_2O_5-TiO_2$ compound.

A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass (티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구)

  • Park, Songyi;Seo, Hyunwoong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Song, Jeong-Yun;Prabakar, Kandasamy;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells ($TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화)

  • Kim, Dae-Hyun;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF

A Study on The Optimum Structure of Dye-sensitized Solar Cell for Upscaling (염료감응형 태양전지의 대면적화를 위한 최적 구조 연구)

  • Seo, Hyun-Woong;Kim, Mi-Jeong;Hong, Ji-Tae;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1295-1296
    • /
    • 2007
  • A lot of researches about dye-sensitized solar cell (DSC) are recently being conducted. Because DSC has several advantages to pass the limits of silicon solar cells such as a low manufacturing expense, a simple manufacturing process and its transparency. But most researches on DSC are still conducted about the unit cell and laboratory-centered. That is, present researches on DSC are not practical. Therefore, researches about large area cells and modules have to be prerequisites for DSC to have the practicality. Characteristics of large area DSC are so different from those of small area DSC in aspect of fill factor and efficiency. In this study, we made an experiment on finding suitable size of DSC that has the most effective power according to the variation of active area. In detail, the experiment was conducted about the optimum ratio of length to width and we introduced the ratio of active area to non-active area to find the active area which has the best output. Because small DSC doesn‘t have the best output in comparison with total area of cell although the smaller DSC has the better efficiency. As a result, we achieved the optimum ratio of length to width of 8:3 and active area of $8cm^2$ as the optimum size for upscaling DSC.

  • PDF

Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate (전도성 기판의 플라즈마 처리에 따른 염료감응형 태양전지 광전변환 효율 특성 변화)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Tae-Un;Hong, Kyung-Jin;So, Soon-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.902-905
    • /
    • 2012
  • This study is explore the photoelectric conversion change of dye-sensitized solar cells with surface treatment of the conductive substrate. gases of FTO surface treatment were $N_2$, and $O_2$. Treatment conditions of surface were gas flux from 25 sccm to 50 sccm and RF power were from 25 W to 50 W. Treatment time and pressure were fixed 5 min and 100 mtoor. The best sheet resistance and surface roughness were obtained by $O_2$ 50 sccm and 50 W and that result were 7.643 ${\Omega}/cm^2$ and 17.113 nm, respectively. The best efficiency result was obtained by $O_2$ 50 sccm and 50 W and that result of Voc, Jsc, FF and efficiency were 7.03 V, 14.88 $mA/cm^2$, 63.75% and 6.67%, respectively.