Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.12.672

Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells  

An, Hye Lan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kang, Hye-Rhin (YongHwa Girl's High School)
Sun, Hyo Jeong (YongHwa Girl's High School)
Han, Ji Ho (YongHwa Girl's High School)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.25, no.12, 2015 , pp. 672-677 More about this Journal
Abstract
Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.
Keywords
dye-sensitized solar cells; counter electrode; Pt-free; graphitic porous carbon nanofibers; catalytic properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Gratzel, Nature, 414, 338 (2001).   DOI
2 J-Y. Lin, J-H. Lian and T-C. Wei, Electrochem. Solid State Lett., 14, D41 (2011).   DOI
3 D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico, J. Power Sourc., 250, 242 (2014).   DOI
4 T. Battumur, S. H. Mujawar, Q. T. Truong, S. B. Ambade, D. S. Lee, W. J. Lee, S-H. Han and S-H. Lee, Curr. Appl. Phys., 12, e49 (2012).   DOI
5 H-J. Shin, S. S. Jeon and S. S. Im, Synth. Met., 161, 1284 (2011).   DOI
6 S. B. Yoon, G. S. Chai, S. K. Kang, J-S. Yu, K. P. Gierszal and M. Jaroniec, J. Am. Chem. Soc., 127, 4188 (2005).   DOI
7 M. N. Patel, X. Wang, D. A. Slanac, D. A. Ferrer, S. Dai, K. P. Johnston and K. J. Stevenson, J. Mater. Chem., 22, 3160 (2012).   DOI
8 O. P. Krivoruchko, N. I. Maksimova, V. I. Zaikovskii and A. N. Salanov, Carbon, 38, 1075 (2000).   DOI
9 M. Sevilla and A. B. Fuertes, Carbon, 44, 468 (2006).   DOI
10 H. L. An, G-H. An and H-J Ahn, J. Alloys Compd., 645, 317 (2015).   DOI
11 Y-J. Lee, B-R. Koo and H-J. Ahn, J. Korean Powder Metall. Inst., 21, 360 (2014).   DOI
12 H-I. Joh, H. K. Song, K-B. Yi and S. H. Lee, Carbon, 53, 399 (2013).   DOI
13 Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012).   DOI
14 Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015).   DOI
15 P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, Sol. Energy, 83, 845 (2009).   DOI
16 F. Gong, H. Wang, X. Xu, G. Zhou and Z-S. Wang, J. Am. Chem. Soc., 134, 10953 (2012).   DOI
17 J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012).   DOI
18 M. Gratzel, Inorg. Chem., 44, 6841 (2005).   DOI
19 J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008).   DOI
20 H-R. An and H-J. Ahn, Korean J. Mater. Res., 24, 565 (2014).   DOI