• Title/Summary/Keyword: 연역적 추론

Search Result 72, Processing Time 0.025 seconds

A Study on the Assessment of Reasoning Ability Using Dynamic Geometry Software (탐구형 기하소프트웨어를 활용한 추론능력 평가에 관한 연구)

  • Lee, Keun-Ju;Cho, Min-Shik
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.459-479
    • /
    • 2006
  • The purpose of this study is to investigate the applicability of DGS(dynamic geometry software) for the assessment of reasoning ability and the influence of DGS on the process of assessing students' reasoning ability in middle school geometry. We developed items for assessing students' reasoning ability by using DGS in the connected form of 'construction - inductive reasoning - deductive reasoning'. And then, a case study was carried out with 5 students. We analyzed the results from 3 perspectives, that is, the assessment of students' construction ability, inductive reasoning ability, and justification types. Items can help students more precisely display reasoning ability Moreover, using of DGS will help teachers easily construct the assessment items of inductive reasoning, and widen range of constructing items.

  • PDF

Study on Pre-service Teacher' Statistics Reasoning Ability (예비 교사의 통계적 추론 능력에 대한 연구)

  • Lee, Jong-Hak
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.295-323
    • /
    • 2011
  • This study is based on the recognition that teacher educators have to focus their attention on developing pre-service teachers' statistical reasoning for statistics education of school mathematics. This paper investigated knowledge on pre-service teachers' statistical reasoning. Statistical Reasoning Assessment (SRA) is performed to find out pre-service teachers' statistical reasoning ability. The research findings are as follows. There was meaningful difference in the statistical area of statistical reasoning ability with significant level of 0.05. This proved that 4 grades pre-service teachers were more improve on statistical reasoning than 2 grades pre-service teachers. Even though most of the pre-service teachers ratiocinated properly on SRA, half of pre-service teachers appreciated that small size of sample is more likely to deviate from the population than the large size of sample. A few pre-service teachers have difficulties in understanding "Correctly interprets probabilities(be able to explain probability by using ratio" and "Understands the importance of large samples(A small sample is more likely to deviate from the population)".

  • PDF

On XML Data Processing through Implementing A Deductive and Object-oriented Database Language (연역 객체 지향 데이터베이스 언어 구현을 통한 XML 데이터 처리에 관한 연구)

  • Kim, Seong-Gyu
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.991-998
    • /
    • 2002
  • With the advent of XML and database languages armed with the object-oriented concept and deductive logic, the problem of efficient query processing for them has become a major issue. We describe a way of processing semi-structured XML data through an implementation of a Deductive and Object-oriented Database (DOODB) language with the explanation of query processing. We have shown how to convert an XML data model to a DOODB data model. We have then presented an efficient query processing method based on Connection Graph Resolution. We also present a knowledge-based query processing method that uses the homomorphism of objects in the database and the associative rule of substitutions.

Students' Mathematical Reasoning Emerging through Dragging Activities in Open-Ended Geometry Problems (개방형 기하 문제에서 학생의 드래깅 활동을 통해 나타난 수학적 추론 분석)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-27
    • /
    • 2014
  • In the present study, we analyze the four participating 9th grade students' mathematical reasoning processes in their dragging activities while solving open-ended geometry problems in terms of abduction, induction and deduction. The results of the analysis are as follows. First, the students utilized 'abduction' to adopt their hypotheses, 'induction' to generalize them by examining various cases and 'deduction' to provide warrants for the hypotheses. Secondly, in the abduction process, 'wandering dragging' and 'guided dragging' seemed to help the students formulate their hypotheses, and in the induction process, 'dragging test' was mainly used to confirm the hypotheses. Despite of the emerging mathematical reasoning via their dragging activities, several difficulties were identified in their solving processes such as misunderstanding shapes as fixed figures, not easily recognizing the concept of dependency or path, not smoothly proceeding from probabilistic reasoning to deduction, and trapping into circular logic.

  • PDF

5th Graders' Logical Development through Learning Division with Decimals (5학년 아동의 소수 나눗셈 원리 이해에 관한 연구)

  • Lee, Jong-Euk
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.99-117
    • /
    • 2007
  • In this paper it is discussed how children develop their logical reasoning beyond difficulties in the process of making sense of division with decimals in the classroom setting. When we consider the gap between mathematics at elementary and secondary levels, and given the logical nature of mathematics at the latter levels, it can be seen as important that the aspects of children's logical development in the upper grades in elementary school should be clarified. This study focuses on the teaching and learning of division with decimals in a 5th grade classroom, because it is well known to be difficult for children to understand the meaning of division with decimals. It is suggested that children begin to conceive division as the relationship between the equivalent expressions at the hypothetical-deductive level detached from the concrete one, and that children's explanation based on a reversibility of reciprocity are effective in overcoming the difficulties related to division with decimals. It enables children to conceive multiplication and division as a system of operations.

  • PDF

A Note on Dealing with Some Contents of Geometry in the Middle School Mathematics (중학교 수학에서 기하 내용 취급에 관한 연구)

  • 김흥기
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.111-127
    • /
    • 2004
  • In this note we examined some terms, parallel lines and angles in elementary school mathematics and middle school mathematics respectively. Since some terms are represented early in elementary school mathematics and not repeated after, some students are not easy to apply the terms to their lesson. Also, since the relation between parallel lines and angles are treated intuitively in 7-th grade, applying the relation for a proof in 8-th grade would be meaningless. For the variety of mathematics education, it is desirable that the relation between parallel lines and angles are treated as postulate. Also, for out standing students, it is desirable that we use deductive reasoning to prove the relation between parallel lines and angles as a theorem. In particular, the treatments of vertical angles and the relation between parallel lines and angles in 7-th grade text books must be reconsidered. Proof is very important in mathematics, and the deductive reasoning is necessary for proof. It would be efficient if some properties such as congruence of vertical angles and the relation between parallel lines and angles are dealt in 8-th grade for proof.

  • PDF

Effects of Mathematical Instructions Based on Constructivism on Learners' Reasoning Ability - With Focus on the Area of Multiplication for 2nd Graders - (구성주의 수학 수업이 추론능력에 미치는 영향 - 초등학교 2학년 곱셈을 중심으로 -)

  • Jung, Hyunsil;Kim, Jinho
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.31-61
    • /
    • 2013
  • The purpose of this study is to confirm constructivists' assumption that when a little low level learners are taken in learner-centered instruction based on a constructivism they can also construct knowledge by themselves. To achieve this purpose, the researchers compare the effects of learner-centered instruction based on the constructivism and teacher-centered instruction based on the objective epistemology where second graders learn multiplication facts through the each treatment on learners' reasoning ability and achievement. Some conclusions are drawn from results as follows. First, learner-centered instruction based on a constructivism has significant effect on learners' reasoning ability. Second, learner-centered instruction has slightly positive effect on learners' deductive reasoning ability. Third, learner-centered instruction has more an positive influence on understanding concepts and principles of not-presented mathematical knowledge than teacher-centered instruction when implementing it with a little low level learners.

  • PDF

The Uncontested Principle and Wonbae Choi's Objections (논란 없는 원리와 최원배 교수의 반론)

  • Lee, Byeong-Deok
    • Korean Journal of Logic
    • /
    • v.15 no.2
    • /
    • pp.273-294
    • /
    • 2012
  • In my previous article "An Inferentialist Account of Indicative Conditionals" and "An Inferentialist Account of Indicative Conditionals and Hasuk Song's Objections", I argued that the so-called Uncontested Principle is not uncontestable. According to the Uncontested Principle, an indicative conditional '$A{\rightarrow}C$' logically implies a material conditional '$A{\supset}C$'. In his recent paper "On the Recent Controversies surrounding the Uncontested Principle" Wonbae Choi presents three objections to my claim. First, my denial of the Uncontested Principle implies rejecting modus ponens. Second, my denial of the Uncontested Principle is tantamount to taking the truth-conditions of an indicative conditional as weaker than those of a material conditional, which are usually taken to be the weakest among conditionals. Third, my view that we can warrantedly assert '$A{\rightarrow}C$' even when 'A ${\therefore}$ C' is inductively justified is based on a misunderstanding of the way in which indicative conditionals are justified. In this paper I argue that Choi's objections are all based on misunderstandings of my view. First, I do not deny the validity of modus ponens (as a form of deductive reasoning). Second, the fact that the inductive warrantability of 'A ${\therefore}$ C' does not imply the truth of '$A{\supset}C$' does not show that the truth-conditions of an indicative conditional is weaker than those of a material conditional. Third, Choi's claim that a contingent conditional '$A{\rightarrow}C$' is true only when 'C' can be deductively derived from 'A' in conjunction with a hidden premiss is not well grounded, nor does it fit the facts.

  • PDF

The Levels of the Teaching of Mathematical Reasoning on the Viewpoint of Mathematical Forms and Objects (수학의 형식과 대상에 따른 수학적 추론 지도 수준)

  • Seo Dong-Yeop
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.95-113
    • /
    • 2006
  • The study tries to differentiate the levels of mathematical reasoning from inductive reasoning to formal reasoning for teaching gradually. Because the formal point of view without the relation to objects has limitations in the creation of a new knowledge, our mathematics education needs consider the such characteristics. We propose an intuitive level of proof related in concrete operations and perceptual experiences as an intermediating step between inductive and formal reasoning. The key activity of the intuitive level is having insight on the generality of reasoning. The details of the process should pursuit the direction for going away from objects and near to formal reasoning. We need teach the mathematical reasoning gradually according to the appropriate level of reasoning more differentiated.

  • PDF

Analysis on Types and Roles of Reasoning used in the Mathematical Modeling Process (수학적 모델링 과정에 포함된 추론의 유형 및 역할 분석)

  • 김선희;김기연
    • School Mathematics
    • /
    • v.6 no.3
    • /
    • pp.283-299
    • /
    • 2004
  • It is a very important objective of mathematical education to lead students to apply mathematics to the problem situations and to solve the problems. Assuming that mathematical modeling is appropriate for such mathematical education objectives, we must emphasize mathematical modeling learning. In this research, we focused what mathematical concepts are learned and what reasoning are applied and used through mathematical modeling. In the process of mathematical modeling, the students used several types of reasoning; deduction, induction and abduction. Although we cannot generalize a fact by a single case study, deduction has been used to confirm whether their model is correct to the real situation and to find solutions by leading mathematical conclusion and induction to experimentally verify whether their model is correct. And abduction has been used to abstract a mathematical model from a real model, to provide interpretation to existing a practical ground for mathematical results, and elicit new mathematical model by modifying a present model.

  • PDF