• Title/Summary/Keyword: 연성포장거동

Search Result 10, Processing Time 0.024 seconds

Pavement Response in Flexible Pavements using Nonlinear Tire Contact Pressure and Measured Tire Contact Area (타이어의 접지 면적과 비선형 접지압력을 고려한 연성포장내의 거동 분석)

  • Jo, Myoung Hwan;Kim, Nakseok;Jeong, Jin-Hoon;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.601-608
    • /
    • 2006
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. In this study, finite element analysis was used to identify the three-dimension states using nonlinear tire contact pressure and measured tire contact area. Measured tire contact area was quite different from the assumed tire contact area, and it resulted in different strain states under the tire. At the surface course, considering tire rib and nonlinear tire pressure, the pavement response presented accurate data compared to the predicted one. However, at the binder course, tire effects were generally negligible and it showed that the predicted pavement response was different compared to the measured one.

Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test (반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2017
  • The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.

Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response (차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Analysis of Time-Dependent Deformation of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로써의 EPS 지오폼의 시간의존적 변형 분석)

  • Park, Ki-Chul;Ramaraj, Babu;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2010
  • The main objective of this study is to investigate the time-dependent deformation of EPS blocks under repeated loading conditions which is the one of the flexible pavement structure. The study comprised of both the experimental work and analytical modeling in order to understand the behavior of EPS blocks under repeated loading. The analytical modeling included the selection of a suitable model for describing the deformation behavior observed under repeated loading conditions, investigating the relationship among the unit weight, deformation and applied stress, analyzing the effect of repeated load on deformation. The test results were compared with the Findley's theory and model analysis with the results of this research under repeated loading conditions. Both Modified Findley's model and the proposed model can be adopted to illustrate the deformation behavior of EPS blocks under repeated loads.

  • PDF

Behavior of Underground Flexible Pipes Subject to Vehicle Load (차량하중을 받는 지중연성관의 거동특성)

  • 이대수;상현규;김경열
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are compared using traditional formula, FEM analysis and model soil box test. The results show that theoretical values are more conservative in strain in comparison with model soil box test and FEM analysis. Considering the strain criteria - maximum 3.5%, flexible pipes can be buried at the depth of 40cm without additional soil improvement. From the result of this study, deformation formula compatible with the field condition was proposed.

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Behavior of Underground Flexible Pipes Subject to Vehicle Load (ll)-Based on Field Tests- (차량하중을 받는 지중연성관의 거동특성 (ll)-실증실험을 중심으로-)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various installation depth are compared using traditional formula, FEM analysis, model soil box test and field test. from the findings of various analyses, considering the strain criteria-maximum 3.5%, it is suggested that flexible pipes can be buried at the depth of 80cm without additional soil improvement.

A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading (자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교)

  • Choi, Chan-Yong;Lee, Sung-Heok;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • The track systems installed in Korea railway consist of two types on ballasted track or ballastless track. In this study, it was compared with difference of the behaviors at roadbed with cyclic loading through full scale model test. From the results of model tests, loading distribution ratio of the concrete slab track become more widely distributed than ballasted track, and loading distribution ratio at concrete track was about 30:20:15. The concrete slab track is likely to behavior of the rigid plate, while ballasted track is such as flexible pavement. The vertical stresses of upper roadbed with traffic cyclic loading in concrete track were measured about 30 kPa or less. It was a scene very similar to the results of the field train running test. The vertical stress at concrete track was occurred approximately 4 times smaller than ballasted track. Also, the soil velocities with cyclic loading at the slab track were occurred about 0.3 cm/sec or less, its 8 times smaller than ballasted track.

  • PDF