• Title/Summary/Keyword: 연기발생량

Search Result 125, Processing Time 0.03 seconds

Fire Tests for Representative Combustibles in Residential Facilities for the Development of Field Commander Training Content (현장지휘관 훈련 콘텐츠 개발을 위한 주거목적시설 대표 가연물 실물화재시험)

  • Moon, Min-Ho;Yang, So-Yeon;Han, Kuk-Il;Lee, Ji-Hee;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2020
  • In this study, the fire patterns, heat emissions, and smoke generated by means of fire tests developed for representative combustibles in residential facilities were analyzed from among seven fire types. These combustibles were selected in a previous study to simulate real-world situations and professionalism required while dealing with these types of fires and develop the field commander training content. Consequently, the maximum heat dissipation was recorded as 728.6 kW, followed by the dissipation measured from the combination of a mattress and electric blanket, desk and chair, and TV and mattress. The total heat emission of sofas (226.2 MJ) and the combination of mattress and electric blanket (2,259.5 ㎡) was recorded. In this study, the scope of the tests was limited to the fire characteristics and characteristics of the combustibles, and it is expected that a simulation using various data acquisition methods and FDS would be performed and evaluated at a later stage.

Smoke characteristics of Wood flour-High Density Polyethylene Composites (목분-HDPE 복합체의 발연특성)

  • Shin, Baeg-Woo;Song, Young-Ho;Lee, Jong-Hyeok;Bang, Dae-Suk;Chung, Kook-Sam
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.482-485
    • /
    • 2011
  • 본 연구에서는 목분 및 고밀도 폴리에틸렌(HDPE) 복합체의 연소시 화재위험성을 살펴보기 위하여 연기밀도 실험장치와 연소가스 측정장치를 이용하여 연기밀도 특성 및 CO 발생량을 살펴보았다. 또한 난연제 4종류를 첨가한 목분-HDPE 복합체와의 발연특성을 비교 분석함으로써 난연제의 억연효과를 살펴보았다. 그 결과 무기난연제인 수산화마그네슘(MDH)을 함유한 복합체가 가장 낮은 최대연기밀도(Dm)값을 나타내었으며 CO 발생량 또한 가장 낮았다.

  • PDF

Study on the Regional Deposition of Smoke Particles in Human Respiratory Tract under the Variation of Fire and Breathing Conditions (화재 및 호흡조건 변화에 따른 연기입자의 인체 호흡기 내 영역별 침착량 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.95-104
    • /
    • 2019
  • Smoke generated in a fire consists of gaseous substances and particulate matter, such as unburned carbon that adsorbed the gases. Human injury caused by inhalation of gaseous substances present in smoke is mostly short-term, whereas damage caused by inhalation of particulate matter is relatively a long-term phenomenon depending on the state of the gas-phase adsorption. The amount and location of the deposited smoke particles are important factors in estimating the damage caused to humans, which are affected by the breathing conditions as well as particle conditions, such as the size and concentration affected by the combustion conditions. In this study, in order to understand the characteristics of the deposition of smoke particles in the respiratory tract related to the study of human smoke inhalation injury, the number and mass concentration of smoke particles deposited in different areas of the respiratory tract for different fuel types, combustion conditions and breathing conditions were calculated. In addition, the amount of mass deposition of smoke in the respiratory tract for a certain period of inhalation was compared with the atmospheric standard of fine dust.

A evaluation study of a fire smoke diffusion delay device installed in a great depth underground double deck tunnel (대심도 복층터널에 설치 가능한 화재연기 확산지연장치 성능 평가 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.225-234
    • /
    • 2018
  • Domestic urban areas are experiencing serious traffic congestion problems due to continuous population growth and increased traffic volume. In order to solve the problem of traffic congestion, the study of great depth underground double deck tunnels using underground space is being actively carried out in the urban areas. The characteristics of great depth underground double deck tunnels are low in cross section, so the spread of fire smoke is expected to spread faster than the road tunnel in case of fire. Therefore, it is necessary to provide a fire smoke delay device which delays the spread of fire smoke when a fire occurs in a tunnels. In the previous study, the diffusion effect was analyzed according to the blocking area when the fire smoke spread delay device was operated through the 3D CFD in the study of preventing the smoke spread in the case of the tunnel fire. A study on fire smoke diffusion delay device using spring elasticity which is excellent in applicability to a tunnel and economical value is studied. In this study, fire smoke spread delay system was developed to fire smoke delay was experimentally analyzed. Fire smoke delay effect of fire smoke delay device appeared. Therefore, it is considered that the can minimize the damage of the victims when installed in the great depth underground double deck tunnels.

Measurement of the Size Distribution of Smoke Particles with Plastic Types Under Various Fire Conditions (다양한 화재조건에서 플라스틱 종류에 따른 연기입자의 크기분포 변화 측정)

  • Goo, Jaehark;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.8-15
    • /
    • 2017
  • Most fire victims succumb to smoke inhalation, and fire smoke toxicity from interior materials is increasing with increased use of plastics. Large amounts of hazardous effects of smoke are related to deposition of smoke particles in respiratory tracts, and deposition characteristics are influenced by size distribution of particles. Thus, it is essential to know the size distribution of smoke particles from plastics for hazard analysis of fire smoke. In a recent study, it has been shown that size distributions of smoke particles from PP are different from wood in many aspects. In order to know whether other plastics show the same characteristics as PP, size distributions of smoke particles from four plastic materials (LDPE, PA66, PMMA, and PVC) were measured in real time under each fire type with various temperature and oxygen supply. In this study, smoke particles from different plastics were generated uniformly by using steady-state tube furnace method provided in ISO/TS 19700. Their size distributions were measured by using an electrical low pressure impactor (ELPI). Results of measurements showed that size distributions of smoke particles from these four plastic materials were similar to those from PP in many aspects. However, they were distinctively different from those of wood.

Developements of Recognition Fire Levels based on Fuzzy Inference System (퍼지인지시스템을 통한 화재상황인식 모델개발)

  • Jin, Hyun-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.393-395
    • /
    • 2011
  • 기존의 화재 감시 시스템은 보통 연기, CO 혹은 온도와 온도의 변화량을 가지고 화재 여부를 판단하였다. 대부분의 각각의 센서에서 측정된 값을 가지고 미리 설정한 값과 비교하여 기준을 넘었을 경우에 화재라고 결정한다.건물 내부에 화재가 발생하였을 경우에는 연기와 고열로 인하여 접근이 어려울 경우가 대부분이다. 사람의 손이 닿지 않는 경우에 화재 감시반 센서모듈을 통하여 고열과 가득한 연기로 인한 내부 환경을 판정하여서 화재상황을 인식하는 방식을 제안한다.

  • PDF

Effect of Flame Retardants on Flame Retardancy of Rigid Polyurethane Foam (난연제 종류에 따른 경질 폴리우레탄 폼의 난연 특성)

  • Kim, Keunyoung;Seo, Wonjin;Lee, Ju-Chan;Seo, Jung-Seok;Kim, Sangbum
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.75-80
    • /
    • 2013
  • In this study, the effect of phosphorus flame retardants on the flame retardancy of the rigid polyurethane foam(PUF) was studied. Tetramethylene bis(orthophos-phorylurea)[TBPU] and Tris(2-chloroethyl) phosphate[TCEP], Tris(2-chloropropyl)phosphate [TCPP], Triethyl phosphate[TEP] were used as flame retardant. It was found that TBPU added PUF exhibits low mean heat release rate(HRR), peak HRR, effective heat of combusion(EHC), mass loss rate (MLR), CO yield and $CO_2$ compared other flame retardants.

PU/Rockwool Hybrid 발포체의 연소특성

  • 강영구;곽봉신
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.156-159
    • /
    • 2000
  • 경량소재로 사용되는 polyurethane은 난연화 및 강도유지를 위해 난연제, 섬유 및 무기충진제 등을 첨가하거나 고밀도화하여 사용하며 발포시켜 경량화하여 성형된다. Polyurethane 발포체는 자동차 내장재, 건축 구조재, 건축 내외장재, 가구재, 포장재료, 신발, 의류 제품, 단열재 등 다양하게 사용되고 있다. 이러한 polyurethane 발포체는 제조 및 가공의 편리함에 비해 화재발생시 연기발생량이 많고 연소가 용이하여 화재를 전파하는 매개물의 역할을 하여 피해를 더욱 가중시키는 취약점을 가지고 있다. (중략)

  • PDF

Combustion Properties of Construction Lumber Used in Everyday Life (생활 주변에서 사용되는 건축용 목재의 연소성)

  • Woo, Tae-young;You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.37-43
    • /
    • 2017
  • The combustion characteristics of four kinds of wood specimens, such as Japan cedar, spruce, lauan, and red pine, were tested using the standards of Cone calorimeter (ISO 5660-1, 2) and smoke density tester (ASTM E 662). Japan cedar caught fire the quickest but the mean heat release rate was the lowest, $58.52kW/m^2$. The mean heat release rate of red pine appeared to be the highest, $71.75kW/m^2$. The lauan and Japan cedar generated relatively large amounts of carbon monoxide while the red pine and the spruce generated relatively large amounts of carbon dioxide. The red pine generated large amounts of smoke and the spruce generated the least amounts of smoke than the other samples. The total smoke release rate in the dynamic method was the highest in red pine and the lowest in spruce. The smoke density of red pine in the static method was highest in the non-flaming and flaming methods. In the non-flaming method, the smoke density of lauan was the second highest, whereas the flaming method was the least. In terms of the heat release rate, the fire risk from red pine was highest among the four test specimens. From the viewpoint of smoke generation, red pine was the most dangerous material in both dynamic and static methods.

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.