Browse > Article
http://dx.doi.org/10.7842/kigas.2013.17.5.75

Effect of Flame Retardants on Flame Retardancy of Rigid Polyurethane Foam  

Kim, Keunyoung (Hyundai-Kia Motors Co., Ltd.)
Seo, Wonjin (Hyundai-Kia Motors Co., Ltd.)
Lee, Ju-Chan (Korea Atomic Energy Research Institute)
Seo, Jung-Seok (Korea Atomic Energy Research Institute)
Kim, Sangbum (Department of Chemical Engineering, Kyonggi University)
Publication Information
Journal of the Korean Institute of Gas / v.17, no.5, 2013 , pp. 75-80 More about this Journal
Abstract
In this study, the effect of phosphorus flame retardants on the flame retardancy of the rigid polyurethane foam(PUF) was studied. Tetramethylene bis(orthophos-phorylurea)[TBPU] and Tris(2-chloroethyl) phosphate[TCEP], Tris(2-chloropropyl)phosphate [TCPP], Triethyl phosphate[TEP] were used as flame retardant. It was found that TBPU added PUF exhibits low mean heat release rate(HRR), peak HRR, effective heat of combusion(EHC), mass loss rate (MLR), CO yield and $CO_2$ compared other flame retardants.
Keywords
rigid polyurethane foam; flame retardant; cone calorimeter; limited oxygen index(LOI);
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Woods, The ICI polyurethane book 2nd ed., John Wiley & Sons, New York (1990).
2 D Drysdale, Fire and cellular polymers, Elsevier Applied Science, London, (1987).
3 A. Magnusson, S. Lundmark, A. Andersson, UTECH Europe 2006, 63 (2006).
4 Z. Tang, M. Valer, J. M. Anderson, J. W. Miller, M. L. Listemann, P. L. McDaniel, and D. K. Morita, W. R. Furlan, Polymer, 43, 6471 (2002).   DOI   ScienceOn
5 S. V. Levchik, and E. D. Weil, Polym Int., 53, 1585 (2004).   DOI   ScienceOn
6 M. Thirumal, Singha, K. Nikhil, Khastgir, Dipak, J. Appl. Polym. Sci., 116, 2260 (2010).
7 L. Jin, M. Dezhu, J. Appl. Polym. Sci., 84, 2206 (2002).   DOI   ScienceOn
8 L. V. Luchkina, A. A. Askadskii, K. A. Bychko, Russ. J. Appl. Chem., 78, 1337 (2005).   DOI
9 H. Mahfuz, V, K. Rangar, M. S. Islam, S. Jeelani, Composites. Part A, 35, 453 (2004).   DOI   ScienceOn
10 W. Zatorski, Z. K. Brzozowski, A. Kolbrecki, Polym. Degrad. Stab., 93, 2071 (2008).   DOI   ScienceOn
11 M. Thirumal, Dipak Khastgir, Nikhil K. Singha, J. Macromol. Sci., Pure Appl. Chem., 46, 704 (2009).   DOI   ScienceOn
12 J. Ni, Q. Tai, H. Lu, Poly. Adv. Technol., 21, 392 (2010).   DOI   ScienceOn
13 J. Kim, K. Lee, J. Bae, J. Yang, S. Hong, Polym. Degrad. Stab., 79, 201 (2003).   DOI   ScienceOn
14 B. N. Jang, J. H. Choi, Poly. Sci. Technol., 20, 8 (2009).
15 M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, M. Gleria, Polym. Degrad. Stab., 87, 287 (2005).   DOI   ScienceOn
16 G. W. Lee, G. E. Kim, KIFSE, 17, 76 (2003).
17 R. H. Kramer, M. Zammarano, G. T. Linteris, Polym. Degrad. Stab., 95, 1115 (2010).   DOI   ScienceOn
18 O. D. Kwon, J. C. Lee, K. S. Seo, C. S. Seo, S. B. Kim, Appl. Chem. Eng., 24(2), 208 (2013).
19 J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
20 C. B. Kim, S. B. Kim, Appl. Chem. Eng., 24(1), 77 (2013).
21 Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Appl. Chem. Eng., 22(4), 439-443 (2011).
22 M. Delichatsios, B. Paroz, and A. Bhargava, Fire Saf. J., 38, 219 (2003).   DOI   ScienceOn
23 M. J. Spearpoint and G. J. Quintiere, Combust. Flame, 123, 308 (2000).   DOI   ScienceOn