DOI QR코드

DOI QR Code

Effect of Flame Retardants on Flame Retardancy of Rigid Polyurethane Foam

난연제 종류에 따른 경질 폴리우레탄 폼의 난연 특성

  • 김근영 (현대기아자동차 연구개발총괄본부) ;
  • 서원진 (현대기아자동차 연구개발총괄본부) ;
  • 이주찬 (한국원자력연구원 핵주기시스템공학기술부) ;
  • 서중석 (한국원자력연구원 핵주기시스템공학기술부) ;
  • 김상범 (경기대학교 화학공학과)
  • Received : 2013.09.05
  • Accepted : 2013.10.22
  • Published : 2013.10.31

Abstract

In this study, the effect of phosphorus flame retardants on the flame retardancy of the rigid polyurethane foam(PUF) was studied. Tetramethylene bis(orthophos-phorylurea)[TBPU] and Tris(2-chloroethyl) phosphate[TCEP], Tris(2-chloropropyl)phosphate [TCPP], Triethyl phosphate[TEP] were used as flame retardant. It was found that TBPU added PUF exhibits low mean heat release rate(HRR), peak HRR, effective heat of combusion(EHC), mass loss rate (MLR), CO yield and $CO_2$ compared other flame retardants.

본 연구에서는 인계 난연제가 첨가된 경질 폴리우레탄 폼을 합성하여 난연제의 종류에 따른 난연성능 변화를 고찰하였다. 난연제로는 Tetramethylene bis(orthophosphorylurea) [TBPU]와 Tris(2-chloroethyl)phosphate[TCEP], Tris(2-chloropropyl)phosphate[TCPP], Triethyl phosphate[TEP]등을 사용하였다. 콘칼로리미터를 이용하여 열방출량, 질량감소율, 연기발생량, CO 및 $CO_2$ 발생량 등을 측정하였다. 콘칼로리미터 시험 결과 TBPU가 첨가될 경우 평균 발열량, 최대 발열량, 유효연소열, 질량 감소율, CO 및 $CO_2$ 발생량이 감소하였고 다른 난연제에 비하여 낮은 값을 나타내어 우수한 난연성능을 나타냄을 알 수 있었다.

Keywords

References

  1. G. Woods, The ICI polyurethane book 2nd ed., John Wiley & Sons, New York (1990).
  2. D Drysdale, Fire and cellular polymers, Elsevier Applied Science, London, (1987).
  3. A. Magnusson, S. Lundmark, A. Andersson, UTECH Europe 2006, 63 (2006).
  4. Z. Tang, M. Valer, J. M. Anderson, J. W. Miller, M. L. Listemann, P. L. McDaniel, and D. K. Morita, W. R. Furlan, Polymer, 43, 6471 (2002). https://doi.org/10.1016/S0032-3861(02)00602-X
  5. S. V. Levchik, and E. D. Weil, Polym Int., 53, 1585 (2004). https://doi.org/10.1002/pi.1314
  6. M. Thirumal, Singha, K. Nikhil, Khastgir, Dipak, J. Appl. Polym. Sci., 116, 2260 (2010).
  7. L. Jin, M. Dezhu, J. Appl. Polym. Sci., 84, 2206 (2002). https://doi.org/10.1002/app.10421
  8. L. V. Luchkina, A. A. Askadskii, K. A. Bychko, Russ. J. Appl. Chem., 78, 1337 (2005). https://doi.org/10.1007/s11167-005-0511-9
  9. H. Mahfuz, V, K. Rangar, M. S. Islam, S. Jeelani, Composites. Part A, 35, 453 (2004). https://doi.org/10.1016/j.compositesa.2003.10.009
  10. W. Zatorski, Z. K. Brzozowski, A. Kolbrecki, Polym. Degrad. Stab., 93, 2071 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.032
  11. M. Thirumal, Dipak Khastgir, Nikhil K. Singha, J. Macromol. Sci., Pure Appl. Chem., 46, 704 (2009). https://doi.org/10.1080/10601320902939101
  12. J. Ni, Q. Tai, H. Lu, Poly. Adv. Technol., 21, 392 (2010). https://doi.org/10.1016/j.apt.2010.02.017
  13. J. Kim, K. Lee, J. Bae, J. Yang, S. Hong, Polym. Degrad. Stab., 79, 201 (2003). https://doi.org/10.1016/S0141-3910(02)00272-0
  14. B. N. Jang, J. H. Choi, Poly. Sci. Technol., 20, 8 (2009).
  15. M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, M. Gleria, Polym. Degrad. Stab., 87, 287 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.023
  16. G. W. Lee, G. E. Kim, KIFSE, 17, 76 (2003).
  17. R. H. Kramer, M. Zammarano, G. T. Linteris, Polym. Degrad. Stab., 95, 1115 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.02.019
  18. O. D. Kwon, J. C. Lee, K. S. Seo, C. S. Seo, S. B. Kim, Appl. Chem. Eng., 24(2), 208 (2013).
  19. C. B. Kim, S. B. Kim, Appl. Chem. Eng., 24(1), 77 (2013).
  20. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  21. Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Appl. Chem. Eng., 22(4), 439-443 (2011).
  22. M. Delichatsios, B. Paroz, and A. Bhargava, Fire Saf. J., 38, 219 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  23. M. J. Spearpoint and G. J. Quintiere, Combust. Flame, 123, 308 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0

Cited by

  1. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea vol.8, pp.6, 2016, https://doi.org/10.3390/su8060502
  2. Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant vol.27, pp.6, 2016, https://doi.org/10.14478/ace.2016.1079
  3. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment) vol.13, pp.11, 2016, https://doi.org/10.3390/ijerph13111074
  4. -(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol on the flame retardancy and physical–mechanical properties of rigid polyurethane foams pp.1530-8049, 2018, https://doi.org/10.1177/0734904118806648
  5. Study on Thermal Treatment of Chlorinated Flame Retardant in Waste Containing Halogen Flame Retardant vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.655
  6. 건축자재용 폴리락타이드의 난연성 향상에 관한 연구 vol.21, pp.2, 2013, https://doi.org/10.5345/jkibc.2021.21.2.113
  7. An Effective Expanded Graphite Coating on Polystyrene Bead for Improving Flame Retardancy vol.14, pp.21, 2013, https://doi.org/10.3390/ma14216729