• Title/Summary/Keyword: 역산모델링

Search Result 120, Processing Time 0.028 seconds

Statics corrections for shallow seismic refraction data (천부 굴절법 탄성파 탐사 자료의 정보정)

  • Palmer Derecke;Nikrouz Ramin;Spyrou Andreur
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.7-17
    • /
    • 2005
  • The determination of seismic velocities in refractors for near-surface seismic refraction investigations is an ill-posed problem. Small variations in the computed time parameters can result in quite large lateral variations in the derived velocities, which are often artefacts of the inversion algorithms. Such artefacts are usually not recognized or corrected with forward modelling. Therefore, if detailed refractor models are sought with model based inversion, then detailed starting models are required. The usual source of artefacts in seismic velocities is irregular refractors. Under most circumstances, the variable migration of the generalized reciprocal method (GRM) is able to accommodate irregular interfaces and generate detailed starting models of the refractor. However, where the very-near-surface environment of the Earth is also irregular, the efficacy of the GRM is reduced, and weathering corrections can be necessary. Standard methods for correcting for surface irregularities are usually not practical where the very-near-surface irregularities are of limited lateral extent. In such circumstances, the GRM smoothing statics method (SSM) is a simple and robust approach, which can facilitate more-accurate estimates of refractor velocities. The GRM SSM generates a smoothing 'statics' correction by subtracting an average of the time-depths computed with a range of XY values from the time-depths computed with a zero XY value (where the XY value is the separation between the receivers used to compute the time-depth). The time-depths to the deeper target refractors do not vary greatly with varying XY values, and therefore an average is much the same as the optimum value. However, the time-depths for the very-near-surface irregularities migrate laterally with increasing XY values and they are substantially reduced with the averaging process. As a result, the time-depth profile averaged over a range of XY values is effectively corrected for the near-surface irregularities. In addition, the time-depths computed with a Bero XY value are the sum of both the near-surface effects and the time-depths to the target refractor. Therefore, their subtraction generates an approximate 'statics' correction, which in turn, is subtracted from the traveltimes The GRM SSM is essentially a smoothing procedure, rather than a deterministic weathering correction approach, and it is most effective with near-surface irregularities of quite limited lateral extent. Model and case studies demonstrate that the GRM SSM substantially improves the reliability in determining detailed seismic velocities in irregular refractors.

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

Distribution of Electrically Conductive Sedimentary Layer in Jeju Island Derived from Magnetotelluric Measurements (MT 탐사자료를 이용한 제주도 지역의 전도성 퇴적층 분포 연구)

  • Lee, Choon-Ki;Lee, Heuisoon;Oh, Seokhoon;Chung, Hojoon;Song, Yoonho;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • We investigate the spatial distribution of highly conductive layer using the one-dimensional inversions of the new magnetotelluric (MT) measurements obtained at the mid-mountain (400 ~ 900 m in elevation) western area of Jeju Island and the previous MT data over Jeju Island, Korea. The conductive layer indicates the sedimentary layer comprised of Seoguipo Fomation and U Formation. There is a definite positive correlation between the top of conductive layer and the earth surface in elevation. On the contrary, the bottom of conductive layer has a negative correlation with the surface elevation. In other words, the conductive layer has a shape of convex lens, which is thickest in the central part. The basement beneath the conductive layer could be concave in the central part of Jeju Island. A kriging considering the correlation between the layer boundary and the surface elevation provides a reliable geoelectric structure model of Jeju Island. However, further studies, i.e. three-dimensional modeling and interpretation integrated with other geophysical or logging data, are required to reveal the possible presence of three-dimensional conductive body near the subsurface vent of Mt. Halla and the causes of the bias in the depths of layer estimated from MT and core log data.

Characterization of an Animal Carcass Disposal Site using Electrical Resistivity Survey (전기비저항 탐사를 이용한 가축사체 매몰지 특성 분석)

  • Ko, Jin-Suk;Kim, Bong-Ju;Choi, Nag-Choul;Kim, Song-Bae;Park, Jeong-Ann;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • In this study, an electrical resistivity survey and a drilling investigation were conducted at an animal carcass disposal site. Chemical analysis of leachate collected from the site was also performed (sampling times: May 2011 and June 2012). Five lines of dipole-dipole electrical resistivity surveys were carried out, along with drilling investigations at 3 points within the disposal areas and 11 points near the disposal site. Two-dimensional inverse modeling of the collected resistivity data was performed to evaluate the properties (size, depth, and form) of the disposal site. Leachate analysis showed that pH of leachate decreased from 7.4 to 6.7, while Eh changed from -358 mV to -48 mV over time. In addition, dissolved ions increased due to the progression of carcass decomposition. Results of the electrical resistivity survey indicated that low resistivity zones (minimum value, $0.64{\Omega}m$) existed at a depth of 8 m from the surface. Considering the bedrock location and carcass disposal depth, there was no evidence of bedrock contamination by leachate. The results of the electrical resistivity survey are consistent with those of the drilling investigation, which indicates that electrical resistivity effectively depicted the properties of the disposal site. This study demonstrates that electrical resistivity survey is a suitable technique for investigation of animal carcass disposal sites.

The Principles and Practice of Induced Polarization Method (유도분극 탐사의 원리 및 활용)

  • Kim, Bitnarae;Nam, Myung Jin;Jang, Hannuree;Jang, Hangilro;Son, Jeong-Sul;Kim, Hee Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.100-113
    • /
    • 2017
  • Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

Two-Dimensional Magnetotelluric Interpretation by Finite-Element Method (유한요소법에 의한 MT 법의 2차원 해석)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Magnetotelluric (MT) methods are widely applied as an effective exploration technique to geothermal surveys. Two-dimensional (2-D) analysis is frequently used to investigate a complicated subsurface structure in a geothermal region. A 2-D finite-element method (FEM) is usually applied to the MT analysis, but we must pay attention to the accuracy of so-called auxiliary fields. Rodi (1976) proposed an algorithm of improving the accuracy of auxiliary fields, and named it as the MOM method. Because it introduces zeros into the diagonal elements of coefficient matrix of the FEM total equation, a pivoting procedure applied to the symmetrical band matrix makes the numerical solution far less efficient. The MOM method was devised mainly for the inversion analysis, in which partial derivatives of both electric and magnetic fields with respect to model parameters are required. In the case of forward modeling, however, we do not have to resort to the MOM method; there is no need of modifying the coefficient matrix, and the auxiliary fields can be elicited from the regular FEM solution. The computational efficiency of the MOM method, however, can be greatly improved through a sophisticated rearrangement of the total equation.

Development of Remote Sensing Reflectance and Water Leaving Radiance Models for Ocean Color Remote Sensing Technique (해색 원격탐사를 위한 원격반사도 및 수출광 모델의 개발)

  • 안유환
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.243-260
    • /
    • 2000
  • Ocean remote sensing reflectance of just above water level was modeled using inherent optical properties of seawater contents, total absorption (a) and backscattering(bb) coefficients ($R_{rs}$=0.046 $b_b$/(a+$b_b$). This modeling was based on the specific absorption and backscattering coefficients of 5 optically active seawater components; phytoplankton pigments, non-chlorophyllous suspended particles, dissolved organic matters, heterotrophic microorganisms, and the other unknown particle components. Simulated remote sensing reflectance($R_{rs}$) and water leaving radiance(Lw) spectra were well agreed with in-situ measurements obtained using a bi-directional fields remote spectrometer in coastal waters and open ocean. $R_{rs}$ values in SeaWiFS bands from the model were analyzed to develop 2-band ratio ocean color chlorophyll with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The model algorithms were examined and compared with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The remote reflectance model will be very helpful to understand the variation of water leaving radiances caused by the various components in the seawater, and to develop new ocean color algorithm for CASE-II water using neural network method or other analytical method, and in the model of fine atmospheric signal correction.

Validation of Permanent Deformation Model for Flexible Pavement using Accelerated Pavement Testing (포장가속시험을 이용한 소성변형예측 모델의 검증)

  • Choi, Jeong Hoon;Seo, Youngguk;Suh, Young Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.491-497
    • /
    • 2009
  • This paper presents the results of accelerated pavement tests (APT) that simulate permanent deformation (rutting) of asphalt concrete pavements under different temperatures and loading courses. Also, finite element (FE) analysis has been conducted to predict the test results. Test section for APT is the same as one of test sections at Korea Expressway Corporation test road and is subjected to a constant moving dual tire wheel load of APT at three different temperatures: 30, 40, $50^{\circ}C$. The moving wheel is applied at different loading courses within a 75cm wide wheel path to account for traffic wandering. Also, the effect of wandering on permanent deformation development is investigated numerically with three wandering schemes. In this study, ABAQUS is adopted to model APT pavement section with plain stain elements and creep strain rate model is used to take into account viscoplastic stain of asphalt concrete mixtures, and elastic layer properties are back-calculated from FWD measurements. Plus, the effect of boundary condition and subgrade on FE permanent deformation predictions is investigated. A full FE model that accounted for subgrade provided more realistic rut depth predictions, indicating subgrade has contributed to surface rutting.

Geophysical Studies on Major Faults in the Gyeonggi Massif : Gravity and Electrical Surveys In the Gongju Basin (경기육괴내 주요 단층대의 지구물리학적 연구: 공주분지의 중력 및 지전기 탐사)

  • Kwon Byung-Doo;Jung Gyung-Ja;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-50
    • /
    • 1994
  • The geologic structure of Gongju Basin, which is a Cretaceous sedimentary basin located on the boundary of Gyeonggi Massif and Ogcheon Belt, is modeled by using gravity data and interpreted in relation with basin forming tectonism. The electrical survey with dipole-dipole array was also conducted to uncover the development of fractures in the two fault zones which form the boundaries of the basin. In the process of gravity data reduction, the terrain correction was performed by using the conic prism model, which showed better results specially for topography having a steep slope. The gravity model of the geologic structure of Gongju basin is obtained by forward modeling based on the surface geology and density inversion. It reveals that the width of the basin at its central part is about $4{\cal}km$ and about $2.5{\cal}km$ at the southern part. The depth of crystalline basement beneath sedimentary rocks of the basin is about $700{\~}400{\cal}m$ below the sea level and it is thinner in the center than in margin. The fault of the southeastern boundary appears more clearly than that of the northwestern boundary, and its fracture zone may extended to the depth of more than $1{\cal}km$. Therefore, it is thought that the tectonic movement along the fault in the southeastern boundary was much stronger. These results coincide with the appearance of broad low resistivity anomaly at the southeastern boundary of the basin in the resistivity section. The fracture zones having low density are also recognized inside the basin from the gravity model. The swelling feature of basement and the fractures in sedimentary rocks of the basin suggest that the compressional tectonic stress had also involved after the deposition of the Cretaceous sediments.

  • PDF

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.