천부 굴절법 탄성파 탐사 자료의 정보정

Statics corrections for shallow seismic refraction data

  • Palmer Derecke (School of Biological, Earth and Environmental Sciences, University of New South Wales) ;
  • Nikrouz Ramin (School of Biological, Earth and Environmental Sciences, University of New South Wales) ;
  • Spyrou Andreur (Fugro Ground Geophysics Pty Ltd)
  • 발행 : 2005.02.01

초록

천부 탄성파 굴절법 탐사를 이용하여 굴절이 발생하는 지층의 속도를 산출하는 것은 ill-posed 문제이다. 계산된 시간 변수들에서의 작은 변화들이 이로부터 산출된 속도들에 커다란 수평적 변화를 가져올 수 있으며 이는 종종 역산 알고리듬의 인위적인 오차를 유발한다. 이러한 인위적인 오차들은 모델링을 통해 인지되거나 보정되지 않는다. 그러므로 만약 모델에 근거한 역산을 통해 정밀한 지하 굴절 모델을 얻고자 한다면 정확한 초기 모델이 필요하다. 탄성파속도에서 인위적인 오차의 원인은 일반적으로 불규칙한 굴절면에 있다. 대부분의 경우에 GRM 방법을 이용하면 불규칙한 굴절면을 다룰 수 있고 굴절면의 정밀한 초기 모델을 만들 수 있다. 하지만 지표에 매우 가까운 극천부 지역 또한 불규칙하다면 GRM 방법의 효능은 감소하고 풍화대 보정이 필요하다. 천부 불균질대에 대한 일반적인 보정방법들은 수평적 확장이 제한된 극천부지역의 불균질대의 경우 효과적이지 못하다. 이럴 경우 GRM 평활화 통계적 방법(Smoothing Statics Method; SSM)이 지층의 속도를 좀 더 정확하게 평가할 수 있는 간단하고 실용적인 방법이다. GRM SSM 방법은 제로 XY 값을 가지고 계산된 시간-심도값들로부터 실제 XY 값을 가지고 얻어진 시간-심도값들의 평균값을 빼줌으로써 평활화 정보정을 수행한다. 심도가 깊어질수록 시간-심도값들이 XY 값에 따라 크게 변하지 않으므로 이들의 평균값은 최적값과 훨씬 더 같아진다. 그러나 극천부의 불균질대에 대해 시간-심도값들은 XY 값들이 증가함에 따라 수평적으로 이동하고 평균화 과정을 통해 대폭 감소한다. 결과적으로, XY값들에 대해 평균화된 시간-심도단면도는 천부의 불균질대에 대한 보정에 효과적이다. 또한 제로 XY 값을 가지고 계산된 시간-심도값들은 천부 불균질대의 영향과 대상 굴절면에 대한 시간-심도값들의 합으로 주어지므로 그들의 차는 정보정을 위해 주시로부터 빼주어야 할 대략적인 값들을 제공한다. GRM SSM 방법은 결정론적인 풍화대에 대한 보정법이라기 보다는 평활화 과정이다. 이 방법은 수평적으로 확장이 매우 제한된 천부 불균질대에 대해 가장 효과적이다. 모델과 현장 적용 결과들을 통해 GRM SSM 방법을 이용하여 불규칙한 굴절면을 가진 지층들에 대해 좀 더 신뢰할 수 있는 정밀한 탄성파 속도를 산출할 수 있음을 보여주고 있다.

The determination of seismic velocities in refractors for near-surface seismic refraction investigations is an ill-posed problem. Small variations in the computed time parameters can result in quite large lateral variations in the derived velocities, which are often artefacts of the inversion algorithms. Such artefacts are usually not recognized or corrected with forward modelling. Therefore, if detailed refractor models are sought with model based inversion, then detailed starting models are required. The usual source of artefacts in seismic velocities is irregular refractors. Under most circumstances, the variable migration of the generalized reciprocal method (GRM) is able to accommodate irregular interfaces and generate detailed starting models of the refractor. However, where the very-near-surface environment of the Earth is also irregular, the efficacy of the GRM is reduced, and weathering corrections can be necessary. Standard methods for correcting for surface irregularities are usually not practical where the very-near-surface irregularities are of limited lateral extent. In such circumstances, the GRM smoothing statics method (SSM) is a simple and robust approach, which can facilitate more-accurate estimates of refractor velocities. The GRM SSM generates a smoothing 'statics' correction by subtracting an average of the time-depths computed with a range of XY values from the time-depths computed with a zero XY value (where the XY value is the separation between the receivers used to compute the time-depth). The time-depths to the deeper target refractors do not vary greatly with varying XY values, and therefore an average is much the same as the optimum value. However, the time-depths for the very-near-surface irregularities migrate laterally with increasing XY values and they are substantially reduced with the averaging process. As a result, the time-depth profile averaged over a range of XY values is effectively corrected for the near-surface irregularities. In addition, the time-depths computed with a Bero XY value are the sum of both the near-surface effects and the time-depths to the target refractor. Therefore, their subtraction generates an approximate 'statics' correction, which in turn, is subtracted from the traveltimes The GRM SSM is essentially a smoothing procedure, rather than a deterministic weathering correction approach, and it is most effective with near-surface irregularities of quite limited lateral extent. Model and case studies demonstrate that the GRM SSM substantially improves the reliability in determining detailed seismic velocities in irregular refractors.

키워드

참고문헌

  1. Ken-An Lou, Gershon Yaniv, Dirk Hhardtmann. 'Fiber Optic Strain Monitoring of Bridge Column Retrofitted with Composite jacket Under Flexural Loads', SPIE Vol. 2446, 1995, pp.16-24
  2. Richaed W. Griffiths. 'Structural Integrity Monitoring of Bridges Using Fiber Optics', SPIE Vol. 2446, 1995, pp. 127-138
  3. Jean-Marie Caussignac, Mohamed Barbachi, Alain Chabert. 'Bridge Bearings Equipped with Optical Fiber Sensor for Measuring Vertical Load through the Support', SPIE Vol. 2719, 1996, pp.220-228
  4. Whitten L. Schulz, Eric Udd, John M. Seim, and Galen E. McGill. 'Advanced Fiber Grating Strain Sensor Systems for Bridges, Structures, and Highways', SPIE Vol. 3325, 1998, pp.212-221
  5. Daniele Inaudi, Nicoletta Casanova, 'Embedded and Surface Mounted Fiber Optic Sensors for Civil Structural Monitoring' SPIE Vol. 3044, 1997, pp.236-243
  6. Whitten L. Schulw, Eric Udd, John M. Seim, and Galen E. McGill, 'Advanced Fiber Grating Strain SenSor Systems for Bridges, Structures, and High-ways', SPIE Vol. 3325, 1998, pp.212-221
  7. I. B. Kwon et al, 'Real-Time Health Monitoring of a Scaleddown Steel Truss Bridge by Passive - Quadrature 3*3 Fiber Optic Michelson Sensors, and High-ways', SPIE Vol. 3325, 1998, pp.253-261
  8. Whitten Daniele Inaudi, Nicoletta Casanova, 'Geo-structural monitoring with long-gauge interferometric Sensors', SPIE Conference on 'Nondestructive Evaluation and Health Monitoring of Aging Infrastructure', Newport Beach, USA, 5-9 March 2000
  9. Philipp M. Nellen, Rolf Bronnimann, Andreas Frank, Pascal Mauron, and Urs Sennhauser, 'Structurally Embedded Fiber Bragg Gratings: Civil Engineering Applications', Photonics East, SPIE's International Conferences on Fiber Optic Technology, ES14: Fiber Optic Sensor Technology and Application, Boston Massachusetts, USA, 19-22 Sep. 1999
  10. Philipp M. Nellen, Andreas Frank, Rolf Broonimann, and Urs Sennhauser, 'Optical Fiber Bragg Gratings for Tunnel Surveillance', SPIE's 7th International Symposium on Smart Structures and Materials, Conference on Sensory Phenomena and Measurement Instrumentation for Smart Structures andMaterials, Newport Beach, California, USA, Mar 5-9, 2000
  11. Ph. M. Nellen, P. Mauron, A. Frank, P. Pequignot, K. Bohnert, H. Brandle, U. Sennhauser, 'Mechanical and Optical Reliability of Fiber Bragg Grating Strain and Temperature Sensors at High Temperature'
  12. Philipp M. Nellen, Andreas Frank, Rolf Bronnimann, Urs Sennhauser, 'Fiber Optical Bragg Grating Sensors Embedded in CFRP Wires', SPIE's 6th Annual Intermational Symposium on Smart Structures and Materials, Conference on Sensory Phenomena and Measurement Instrementation for Smart Structures and Materials, Newport Beach, California USA, March 1-5, 1999
  13. Andreas Frank, Philipp M. Nellen, and Urs Sennhauser, 'Novel Methods for Simultaneous Strain and Temperature Measurements with Optical Fiber Bragg Gratings', Photonics East, SPIE's International Conferences on Fiber Optic Technology, ES14: Fiber Optic Sensor Technology and Application, Boston Massachusetts, USA, 19-22 Sep. 1999
  14. P. Mauron, Ph. M. Nellen, U. Sennhauser, M.N. Trutzel, D. Betz, L. Staudigel, V. Hagemann, M. Rothhardt, 'Lifetime of Fiber Bragg Gratings Under Cycilc Fatigue', SPIE's International Symposium on Voice, Video, and Data Communications, Program on Optical Fiber Devices and Systems, VV12: Conference on Optical Fiber Reliability and Testing, Boston, Massachusetts, USA, 19-22 September 1999
  15. Barry G. Grossman, Li-Tien Huang, Paul J. Cosentino, and Wulf von Eckroth, 'Three-Dimensional Structural Strain Measurement with the Use of Fiber-Optic Sensors', Transportation Research Record 1596, 45-50