• Title/Summary/Keyword: 역구조 결함

Search Result 1,092, Processing Time 0.027 seconds

A Role-Performer Bipartite Matrix Generation Algorithm for Human Resource Affiliations (인적 자원 소속성 분석을 위한 역할-수행자 이분 행렬 생성 알고리즘)

  • Kim, Hak-Sung
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.149-155
    • /
    • 2018
  • In this paper we propose an algorithm for generating role-performer bipartite matrix for analyzing BPM-based human resource affiliations. Firstly, the proposed algorithm conducts the extraction of role-performer affiliation relationships from ICN(Infromation Contorl Net) based business process models. Then, the role-performer bipartite matrix is constructed in the final step of the algorithm. Conclusively, the bipartite matrix generated through the proposed algorithm ought to be used as the fundamental data structure for discovering the role-performer affiliation networking knowledge, and by using a variety of social network analysis techniques it enables us to acquire valuable analysis results about BPM-based human resource affiliations.

Design of HF-UHF dual Band Tag Antenna (HF-UHF RFID 이중대역 태그 안테나 설계)

  • Yoon, Nanae;Nam, Havan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • In this paper, a dual band antenna with the operating frequency in HF and UHF band was proposed. The antenna structure consists of three spiral turns coil in the bottom side to generate the HF frequency of 13.56 MHz. In the top of the antenna, an inverted-spiral dipole structure is used to create the UHF frequency of 922 MHz. The dual band antenna was optimized to reduce size with $80mm{\times}40mm{\times}0.8mm$ dimension. The antenna presents the omnidirectional characteristic with high gain. To validate the theoretical design, the antenna was simulated using FR-4 substrate and verified the simulation results.

Design of Miniaturized Wideband Tapered Slot Antenna Using Slots Combining Fan-shaped Structures (부채꼴 구조를 조합한 슬롯을 이용한 소형 광대역 테이퍼드 슬롯 안테나 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.629-634
    • /
    • 2023
  • In this paper, the design of a miniaturized wideband tapered slot antenna using slots combining various types of fan-shaped structures was studied. To miniaturize the tapered slot antenna and make it operate at low frequencies, slots combining fan-shaped structures were added to the ground plane of the tapered slot antenna. The miniaturization design process of the final proposed antenna was systematically explained by comparing the input reflection coefficient and gain variations when each fan-shaped structure was appended, compared to when there was no slot. The proposed miniaturized wideband tapered slot antenna using slots combining the fan-shaped structures was fabricated on an RF-35 substrate and its measured characteristics were compared with the simulation results. Experiment results show that the frequency band with a voltage standing wave ratio (VSWR) less than 2 was 2.59-11.39 GHz, and gain within the band was measured to be 3.3-7.0 dBi. The proposed miniaturized wideband tapered slot antenna can be reduced in size by 36.9%, compared to when there are no slots in the ground plane.

Design and Fabrication of Broad Gain Laser Diodes (광대역 이득 레이저 다이오드 설계 및 제작)

  • 권오기;김강호;김현수;김종회;심은덕;오광룡
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.286-291
    • /
    • 2003
  • Asymmetric multiple quantum well ridge waveguide laser diodes (AMQW RWG LDs) with a wide and flat gain spectrum were designed and fabricated. The operating parameters and gain spectra were measured and analyzed for uncoated and anti-reflection (AR) coated LDs. For AR coated 500 mm-long RWG LOs, the extremely flat gain spectrum over a spectral range of 90 nm was obtained at the current 75 ㎃.

Improvement of Fouling Resistance with Reverse Osmosis Membrane Using Multi-layer Silane-Epoxy Surface Modification (실란-에폭시 다층 표면개질을 통한 역삼투막의 내오염성 향상)

  • Kwon, Sei;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.332-342
    • /
    • 2015
  • In this study, to solve the major problem of reverse osmosis (RO) membrane, surface of reverse osmosis membrane was modified by silane-epoxy multi layer. Octyltrimethoxysilane (OcTES) was polymerized to membrane surface via cross-linking by Sol-gel method. n = 8 alkylgroup of OcTES formed the branch structure by self assembly. And for improve fouling resistance of RO membrane, Ether group of ethylene glycol diglycidyl ether (EGDE) was given to improve hydrophilicity of RO membrane surface by ring-opening. To analyze structure of RO membrane surface with FE-TEM and AFM. Membrane surface of the ridge and valley structure and the bridge structure was confirmed due to the multi-layer surface modification of OcTES and EGDE. And through the increase of the roughness, the branch structure was formed well on membrane surface. Through the XPS analysis was identified chemical structure of membrane surface. And confirmed that the hydrophilic surface modification is given to the surface of the film through a Contact angle analysis. In optimization of EGDE surface modification condition, was suitable 0.5 wt% EGDE concentraion and $70^{\circ}C$ ring-opening temperature. In result of fouling resistance test and MFI is SUL-H10, $PA-OcTES_{1.0}$, $PA-OcTES_{1.0}-EGDE_{0.5}$ 68.7, 60.4, 5.4 ($10E-8hr/mL^2$), multi-layer surface modified membrane improved fouling resistance.

Structural System Identification by Iterative IRS (반복적 IRS를 이용한 구조 시스템 식별)

  • Baek, Sung-Min;Kim, Hyun-Gi;Kim, Ki-Ook;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • In the inverse perturbation method, enormous computational resource was required to obtain reliable results, because all unspecified DOFs were considered as unknown variables. Thus, in the present study, a reduced system method is used to condense the unspecified DOFs by using the specified DOFs, and to improve the computational efficiency as well as the solution accuracy. In most of the conventional reduction methods, transformation errors occur in the transformation matrix between the unspecified DOFs and the specified DOFs. Thus it is hard to obtain reliable and accurate solution of inverse perturbation problems by reduction methods due to the error in the transformation matrix. This numerical trouble is resolved in the present study by adopting iterative improved reduced system(IIRS) as well as by updating the transformation matrix at every step. In this reduction method, system accuracy is related to the selection of the primary DOFs and Iteration time. And both are dependent to each other So, the two level condensation method (TLCS) is selected as Selection method of primary DOFs for increasing accuracy and reducing iteration time. Finally, numerical verification results of the present iterative inverse perturbation method (IIPM) are presented.

An Experimental Study of Sediment Transport Patterns behind Offshore Structure (외해 구조물 배후의 표사이동에 관한 실험적 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Recently, securing a vast land in the land region becomes more difficult and efforts to seek its alternation in the sea area have been increased. As a consequence, the coastal region has been faced to extensive beach erosion problems. In planning offshore structures such as artificial islands, it is necessary to forecast the influence of the structure construction exerting on the beach erosion of the adjacent coast. In the present study, the sediment movement pattern behind offshore structure was examined through a series of three dimensional movable bed experiments, so as to develop the numerical model which forecasts morphological change including beach erosions. The experimental results reveal that the sediment movement patterns of the beach line side and the depth region are separated at a certain boundary line. In details, at the beach side including swash zone the sediment movement becomes dominant, which is governed by a relation between depth contours and incident wave directions, while at the depth region the bed load and suspended load due to the orbit motion of waves are carried by nearshore currents, and both movements are clearly separated at a specified boundary that is related to partial standing wave from the beach. It is expected that these results can be effectively used for verification of a numerical model on morphological change of the coast.

  • PDF

Study on the Broadband RF Front-End Architecture (광대역 RF 전단부 구조에 관한 연구)

  • Go, Min-Ho;Pyo, Seung-Chul;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.183-189
    • /
    • 2009
  • In this paper, we propose RF front-end architecture using hybrid conversion method to receive broadband signal. The validity is verified by design, fabrication and experiment. The proposed RF front-end architecture due to up-conversion block improves the deficiency of performance deterioration to be generated through harmonic signal and image signal conversion in the conventional RF front-end, and improves the deficiency of the complexity that is from to adopt a multiple local oscillators for the generation of wideband LO signal in the conventional RF front-end by applying the principle that tuning bandwidth is multiplied at sub-harmonic mixer. Manufactured circuits satisfy the deduced design specification and target standard with gain above 80 dB, noise figure below 6.0 dB and IIP3 performance above -5.0 dBm for the condition of the minimum gain in RF front-end.

  • PDF

Compact Broad Band-pass Filter with SIR-Parallel Coupled Structure (SIR 평행결합 선로를 갖는 소형 광대역 대역통과 필터)

  • Hong, Tae-Ui;Lee, Jeong-Hun;Yoon, Ki-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.84-90
    • /
    • 2010
  • In this paper, the reduced size of broad bandpass filter with parallel coupled line structure is presented. This proposed filter can control bandwidth of narrow to broadband by adjusting the coupling coefficient. The conventional filter is operated with a narrow band. If a higher bandwidth is desired than the conventional narrow bandwidth, it is hard to realize due to the coupling coefficient between feeding line and resonator. In this paper, to overcome this limitation, a proposed bandpass filter is designed with reduced size due to SIR(Stepped Impedance Resonator) and multi-grade type structures than conventional one, and it has characteristics of adjusting bandwidth freely as per quantity of coupling coefficient. The proposed bandpass filter that, experimental results of insertion and return losses are 0.42 dB and 20.9 dB with bandwidth of 60 % at the center frequency of 5.8 GHz, respectively.

Finite Element Model Updating of Structures Using Deep Neural Network (깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅)

  • Gong, Ming;Park, Wonsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.147-154
    • /
    • 2019
  • The finite element model updating can be defined as the problem of finding the parameters of the finite element model which gives the closest response to the actual response of the structure by measurement. In the previous researches, optimization based methods have been developed to minimize the error of the response of the actual structure and the analytical model. In this study, we propose an inverse eigenvalue problem that can directly obtain the parameters of the finite element model from the target mode information. Deep Neural Networks are constructed to solve the inverse eigenvalue problem quickly and accurately. As an application example of the developed method, the dynamic finite element model update of a suspension bridge is presented in which the deep neural network simulating the inverse eigenvalue function is utilized. The analysis results show that the proposed method can find the finite element model parameters corresponding to the target modes with very high accuracy.