DOI QR코드

DOI QR Code

Improvement of Fouling Resistance with Reverse Osmosis Membrane Using Multi-layer Silane-Epoxy Surface Modification

실란-에폭시 다층 표면개질을 통한 역삼투막의 내오염성 향상

  • Kwon, Sei (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • 권세이 (경희대학교 공과대학 화학공학과) ;
  • 이용택 (경희대학교 공과대학 화학공학과)
  • Received : 2015.08.10
  • Accepted : 2015.08.24
  • Published : 2015.08.31

Abstract

In this study, to solve the major problem of reverse osmosis (RO) membrane, surface of reverse osmosis membrane was modified by silane-epoxy multi layer. Octyltrimethoxysilane (OcTES) was polymerized to membrane surface via cross-linking by Sol-gel method. n = 8 alkylgroup of OcTES formed the branch structure by self assembly. And for improve fouling resistance of RO membrane, Ether group of ethylene glycol diglycidyl ether (EGDE) was given to improve hydrophilicity of RO membrane surface by ring-opening. To analyze structure of RO membrane surface with FE-TEM and AFM. Membrane surface of the ridge and valley structure and the bridge structure was confirmed due to the multi-layer surface modification of OcTES and EGDE. And through the increase of the roughness, the branch structure was formed well on membrane surface. Through the XPS analysis was identified chemical structure of membrane surface. And confirmed that the hydrophilic surface modification is given to the surface of the film through a Contact angle analysis. In optimization of EGDE surface modification condition, was suitable 0.5 wt% EGDE concentraion and $70^{\circ}C$ ring-opening temperature. In result of fouling resistance test and MFI is SUL-H10, $PA-OcTES_{1.0}$, $PA-OcTES_{1.0}-EGDE_{0.5}$ 68.7, 60.4, 5.4 ($10E-8hr/mL^2$), multi-layer surface modified membrane improved fouling resistance.

본 연구는 역삼투막의 막오염을 해결하기 위하여 실란-에폭시 층을 형성시킨 다층 표면개질법을 이용하여 역삼투막의 내오염성을 향상시키고자 하였다. Sol-gel법을 이용하여 Octyltrimethoxysilane (OcTES)을 막 표면에 가교를 통해 고분자화 하였으며 n = 8인 OcTES의 알킬기가 자발적인 self-assembly를 통하여 막 표면에 가지구조를 형성시켰다. 그 위에 ethylene glycol diglycidyl ether (EGDE)의 ether기를 ring-opening을 통해 막 표면에 친수성을 부여하여 역삼투막의 내오염성을 향상시키고자 하였다. FE-TEM, AFM을 이용하여 막의 단면 및 표면구조 분석을 하였고 막 표면의 ridge and valley 구조와 OcTES, EGDE의 다층 표면개질로 인한 bridge 구조를 확인하였으며, 거칠기의 증가를 통해 막 표면의 가지가 잘 형성되었음을 확인하였다. XPS를 통하여 막 표면의 화학구조에 대한 관찰과 표면개질이 잘 이루어졌음을 확인하였으며, contact angle 분석을 통해 표면개질막의 표면에 친수성이 부여되었음을 확인하였다. EGDE 표면개질 조건 최적화를 진행한 결과 EGDE 농도는 0.5 wt%, ring-opening 온도는 $70^{\circ}C$가 가장 적합하였고, 내오염성 실험 결과 및 막오염지수(MFI)는 SUL-H10, $PA-OcTES_{1.0}$, $PA-OcTES_{1.0}-EGDE_{0.5}$이 68.7, 60.4, 5.4 ($10E-8hr/mL^2$)로 나타나 다층 표면 개질막의 내오염성이 매우 향상되었음을 확인할 수 있었다.

Keywords

References

  1. W. S. Winston Ho and K. K. Sirkar, "Membrane handbook", Chapman and Hall Pub., USA (1992).
  2. J. E. Cadotte, "Reverse osmosis membrane", U. S. Patent, 4,259,183 (1981).
  3. S. I. Kwon, K. Y. Jee, and Y. T. Lee, "Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance". Membr. J., 23(6), 439 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.439
  4. J. Glater, S. K. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994). https://doi.org/10.1016/0011-9164(94)00068-9
  5. M. Mulder, "Basic principles of membrane technology", Kluwer Academic Publishers, London (1991).
  6. R. W. Baker, "Membrane technology and applications", McGraw-Hill Co., USA (2000).
  7. W. S. Winston Ho and K. K. Sirkar, "Membrane Handbook", Chapman and Hall Pub., USA, (1992).
  8. E. M. Vrijenhoeka, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001). https://doi.org/10.1016/S0376-7388(01)00376-3
  9. Y. G. Kim, Y. T. Lee, and N. W. Kim, "Interpretation of permeation characteristics and membrane transport models through polyamide reverse osmosis membrane". Membr. J., 14(1), 75 (2004).
  10. D. Li and H. Wang, "Recent developments in reverse osmosis desalination membranes", J. Materials Chemistry, 20, 4551 (2010). https://doi.org/10.1039/b924553g
  11. T. Trana, B. Boltoa, S. Grayb, M. Hoanga, and E. Ostarcevic, "An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant", Water Research, 41, 3915 (2007). https://doi.org/10.1016/j.watres.2007.06.008
  12. D. J. Delgado and P. Moreno, "Silica scale inhibition relevant to desalination technologies: progress and recent developments", Desalination Research Progress, Chapter VI, 249 (2008).
  13. S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, "Surface modification of commercial composite polyamide reverse osmosis membranes", J. Membr. Sci., 139, 175 (1998). https://doi.org/10.1016/S0376-7388(97)00248-2
  14. M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, "Development of crosslinked aromatic polyamide composite reverse osmosis membrane", J. Chem. Soc. Jpn., 2, 97 (1994).
  15. V. Freger, J. Gilron, and S. Belfer, "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209, 283 (2002). https://doi.org/10.1016/S0376-7388(02)00356-3
  16. K. P. Lee, T. C. Arcnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination development to date and future potential", J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  17. C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Probing the nano and micro-scales of reverse osmosis membranes A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287, 146 (2007). https://doi.org/10.1016/j.memsci.2006.10.038
  18. V. Freger, "Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization", Langmuir, 19, 4791 (2003). https://doi.org/10.1021/la020920q
  19. F. A. Pacheco, I. Pinnau, M. Reinhard, and J. O. Leckie, "Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques", J. Membr. Sci., 358, 51 (2010). https://doi.org/10.1016/j.memsci.2010.04.032
  20. M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behaviour of RO membranes", J. Membr. Sci., 121, 209 (1996). https://doi.org/10.1016/S0376-7388(96)00181-0
  21. V. Ganesana, P. K. Rastogia, R. Guptaa, M. T. Meredithb, and S. D. Minteer, "Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid", Electrochimica Acta, 105, 31 (2013). https://doi.org/10.1016/j.electacta.2013.04.178
  22. K. Fujita, A. Oya, R. Benoit, F. Beguin, "Structure and mechanical properties of methyltrimethoxysilane-treated taeniolite films", J. Membr. Sci., 31, 4609 (1996).
  23. C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242, 149 (2009). https://doi.org/10.1016/j.desal.2008.04.003
  24. K. J. Jothi and K. Palanivelu, "Synergistic effect of silane modified nanocomposites for active corrosion protection", Ceramics International, 39, 7619 (2013). https://doi.org/10.1016/j.ceramint.2013.03.017
  25. V. G. Parale, D. B. Mahadik, S. A. Mahadik, M. S. Kavale, P. B. Wagh, S. C. Gupra, and A. V. Rao, "OTES modified transparent dip coated silica coatings", Ceramics International, 39, 835 (2013). https://doi.org/10.1016/j.ceramint.2012.05.079
  26. E. M. V. Wagner, A. C. Saglea, M. M. Sharma, Y. H. La, and B. D. Freeman, "Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance", J. Membr. Sci., 367, 273 (2011). https://doi.org/10.1016/j.memsci.2010.11.001
  27. S. F. E. Boerlage, M. D. Kennedy, M. R. Dickson, D. E. Y. El-Hodali, and J. C. Schippers, "The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane", J. Membr. Sci., 197, 1 (2002). https://doi.org/10.1016/S0376-7388(01)00618-4
  28. N. W. Kim, "Preparation and characteristics of fouling resistant nanofiltration membranes", Membr. J., 17(1), 44 (2007).
  29. S. F. E. Boerlage, M. D. Kennedy, M. P. Aniye, E. M. Abogrean, G. Galjaard, and J. C. Schippers, "Monitoring particulate fouling in membrane systems", Desalination, 118, 131 (1998). https://doi.org/10.1016/S0011-9164(98)00107-6