Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.332

Improvement of Fouling Resistance with Reverse Osmosis Membrane Using Multi-layer Silane-Epoxy Surface Modification  

Kwon, Sei (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Publication Information
Membrane Journal / v.25, no.4, 2015 , pp. 332-342 More about this Journal
Abstract
In this study, to solve the major problem of reverse osmosis (RO) membrane, surface of reverse osmosis membrane was modified by silane-epoxy multi layer. Octyltrimethoxysilane (OcTES) was polymerized to membrane surface via cross-linking by Sol-gel method. n = 8 alkylgroup of OcTES formed the branch structure by self assembly. And for improve fouling resistance of RO membrane, Ether group of ethylene glycol diglycidyl ether (EGDE) was given to improve hydrophilicity of RO membrane surface by ring-opening. To analyze structure of RO membrane surface with FE-TEM and AFM. Membrane surface of the ridge and valley structure and the bridge structure was confirmed due to the multi-layer surface modification of OcTES and EGDE. And through the increase of the roughness, the branch structure was formed well on membrane surface. Through the XPS analysis was identified chemical structure of membrane surface. And confirmed that the hydrophilic surface modification is given to the surface of the film through a Contact angle analysis. In optimization of EGDE surface modification condition, was suitable 0.5 wt% EGDE concentraion and $70^{\circ}C$ ring-opening temperature. In result of fouling resistance test and MFI is SUL-H10, $PA-OcTES_{1.0}$, $PA-OcTES_{1.0}-EGDE_{0.5}$ 68.7, 60.4, 5.4 ($10E-8hr/mL^2$), multi-layer surface modified membrane improved fouling resistance.
Keywords
Reverse Osmosis; Fouling Resistance; Multi-layer; Surface Modification; Self-assembly; Ring-opening;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. S. Winston Ho and K. K. Sirkar, "Membrane handbook", Chapman and Hall Pub., USA (1992).
2 J. E. Cadotte, "Reverse osmosis membrane", U. S. Patent, 4,259,183 (1981).
3 S. I. Kwon, K. Y. Jee, and Y. T. Lee, "Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance". Membr. J., 23(6), 439 (2013).   DOI
4 J. Glater, S. K. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994).   DOI
5 M. Mulder, "Basic principles of membrane technology", Kluwer Academic Publishers, London (1991).
6 R. W. Baker, "Membrane technology and applications", McGraw-Hill Co., USA (2000).
7 W. S. Winston Ho and K. K. Sirkar, "Membrane Handbook", Chapman and Hall Pub., USA, (1992).
8 E. M. Vrijenhoeka, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001).   DOI
9 Y. G. Kim, Y. T. Lee, and N. W. Kim, "Interpretation of permeation characteristics and membrane transport models through polyamide reverse osmosis membrane". Membr. J., 14(1), 75 (2004).
10 D. Li and H. Wang, "Recent developments in reverse osmosis desalination membranes", J. Materials Chemistry, 20, 4551 (2010).   DOI
11 T. Trana, B. Boltoa, S. Grayb, M. Hoanga, and E. Ostarcevic, "An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant", Water Research, 41, 3915 (2007).   DOI
12 D. J. Delgado and P. Moreno, "Silica scale inhibition relevant to desalination technologies: progress and recent developments", Desalination Research Progress, Chapter VI, 249 (2008).
13 S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, "Surface modification of commercial composite polyamide reverse osmosis membranes", J. Membr. Sci., 139, 175 (1998).   DOI
14 M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, "Development of crosslinked aromatic polyamide composite reverse osmosis membrane", J. Chem. Soc. Jpn., 2, 97 (1994).
15 V. Freger, J. Gilron, and S. Belfer, "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209, 283 (2002).   DOI
16 F. A. Pacheco, I. Pinnau, M. Reinhard, and J. O. Leckie, "Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques", J. Membr. Sci., 358, 51 (2010).   DOI
17 K. P. Lee, T. C. Arcnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination development to date and future potential", J. Membr. Sci., 370, 1 (2011).   DOI
18 C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Probing the nano and micro-scales of reverse osmosis membranes A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287, 146 (2007).   DOI
19 V. Freger, "Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization", Langmuir, 19, 4791 (2003).   DOI
20 M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behaviour of RO membranes", J. Membr. Sci., 121, 209 (1996).   DOI
21 V. Ganesana, P. K. Rastogia, R. Guptaa, M. T. Meredithb, and S. D. Minteer, "Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid", Electrochimica Acta, 105, 31 (2013).   DOI
22 K. Fujita, A. Oya, R. Benoit, F. Beguin, "Structure and mechanical properties of methyltrimethoxysilane-treated taeniolite films", J. Membr. Sci., 31, 4609 (1996).
23 C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242, 149 (2009).   DOI
24 S. F. E. Boerlage, M. D. Kennedy, M. R. Dickson, D. E. Y. El-Hodali, and J. C. Schippers, "The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane", J. Membr. Sci., 197, 1 (2002).   DOI
25 K. J. Jothi and K. Palanivelu, "Synergistic effect of silane modified nanocomposites for active corrosion protection", Ceramics International, 39, 7619 (2013).   DOI
26 V. G. Parale, D. B. Mahadik, S. A. Mahadik, M. S. Kavale, P. B. Wagh, S. C. Gupra, and A. V. Rao, "OTES modified transparent dip coated silica coatings", Ceramics International, 39, 835 (2013).   DOI
27 E. M. V. Wagner, A. C. Saglea, M. M. Sharma, Y. H. La, and B. D. Freeman, "Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance", J. Membr. Sci., 367, 273 (2011).   DOI
28 N. W. Kim, "Preparation and characteristics of fouling resistant nanofiltration membranes", Membr. J., 17(1), 44 (2007).
29 S. F. E. Boerlage, M. D. Kennedy, M. P. Aniye, E. M. Abogrean, G. Galjaard, and J. C. Schippers, "Monitoring particulate fouling in membrane systems", Desalination, 118, 131 (1998).   DOI