• Title/Summary/Keyword: 엔진 회전수

Search Result 254, Processing Time 0.029 seconds

A Numerical Analysis on Combustion Characteristics of the Gasoline Engine using Methanol Reformulated Fuels under WOT Condition (전부하 운전조건에서 메탄올 개질연료를 사용한 가솔린 엔진의 연소특성에 대한 수치해석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • This research is to decide the possibility of using RM50(reformulated methanol fuel) without any modification of engine by the method of numerical analysis. Comparing the heat release rate, the difference among each fuel was decreased according to the increase of the engine speed, and the maximum heat release rate was higher in the order of RM50 and gasoline fuel. Also, this order corresponds to the order of burning speed. RM50 had the higher turbulent burning speed, and the curve of turbulent intensity was showed similar tendency to the curve of turbulent burning speed. RM50 had relatively high burning speed, short quenching length, high temperature in cylinder, so that it might increase NO emission, but owing to chemical reaction dynamics, it was decreased NO emission. Therefore, in order to predict the possibility of using RM50, it is needed to consider not only the temperature in cylinder by low heating value, but also combustion characteristics including burning speed.

Numerical Study on the Hydrodynamic Performance Prediction of a Turbopump Inducer (인듀서 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.72-78
    • /
    • 2003
  • In the present paper, computational studies on the hydrodynamic behavior of the inducer for the rocket-engine turbopump are presented including the effect of the mass flow rate. As the mass flow rate is increased, the inducer showed better performance with weak back flows which may have deleterious effects upon the anti-cavitation ability. But the adopted inducer showed low head rise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The static pressure distributions at the shroud surface are compared with experimental results showing very good agreements except near the leading edge where strong back flows are present. The overall performance of the inducer such as, efficiency, head rise is also compared with experiments. The computational results are generally in good agreements with experimental ones near the design point, but two results show discrepancy at the high flow rate.

A embodiment of the interface module for feed back control between auto-pilot with water-jet system (오토파일럿과 워터젯시스템의 피드백 제어계 인터페이스 모듈의 구현)

  • Oh, Jin-Seong;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1108-1111
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absorbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceleration efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto pilot and water jet are different, we need the system to interface between each system. We designed the interface that efficiently digital feed back control embedded module between auto pilot and water jet system in this paper.

  • PDF

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Performance Test of a 75-tonf Rocket Engine Turbopump (75톤급 액체로켓엔진용 터보펌프 실매질 성능시험)

  • Jeong, Eunhwan;Kwak, Hyun-Duck;Kim, Dae-Jin;Kim, Jin-Sun;Noh, Jun-Gu;Park, Min-Ju;Park, Pyun-Goo;Bae, Jun-Hwan;Shin, Ju-Hyun;Wang, Seong-Won;Yoon, Suck-Hwan;Lee, Hanggi;Jeon, Seong-Min;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Seong-Lyong;Kim, Seung-Han;Woo, Seong-Phil;Han, Yeong-Min;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • Performance tests of a 75-tonf liquid rocket engine turbopump were conducted. The performance of sub-components - two pumps and a turbine - and their power matching were measured and examined firstly near the design speed under the LN2 and kerosene environment. In the real propellant - LOX and kerosene - environment tests, design and off-design performance of turbopump were fully verified in regime of the rocket engine operation. During the off-design performance tests, turbopump running time was set longer than the engine operating time to verify the pump operability and set the pump inlet pressure close to design NPSHr to investigate pump suction capability in parallel. It has been found that developed-turbopump satisfied all of the engine required performances.

Effect of Internal Circuit Faults of Non-reference Type APS Malfunction on Commercial and Tactical Vehicles (참조센서가 없는 상용/전술차량용 APS내부 회로 불량이 오작동에 미치는 영향)

  • Jo, Yong Jin;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.163-170
    • /
    • 2016
  • In the condition of electronic controlled acceleration system, APS Sensor is the only and the most important parts to reflect the will of driver. Especially, the non-reference type APS is the critical part of this system. It can't provide the cross-reference values and it will make the vehicle goes into the 'NMC(Non-moveable condition)' or 'Limp-home mode' on the malfunction situation easier. If the situation is happened, it's very dangerous condition for the drivers, soldiers and war material systems of battlefield. The electronic control is not a necessary system for the tactical vehicles. The tactical vehicles must be prepared the manual control system independently from the electronic control system to escape, save and rescue the soldier's life and war materials. Therefore it was studied the water-penetrated broken APS output. If the output value was changed without driver's will, even the cross-reference type APS, it will effect the uncontrollable engine RPM changing or the performance down on limp-home mode. It means the manual control system of tactical vehicle is needed for any kinds of APS.

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.

Effectiveness and Characteristics Analysis of Inertia Driving on Fuel-Cut Zones in Urban Highway (도시부도로 연료차단구역의 관성주행 특성 및 효과분석)

  • Choi, Eun Jin;Kim, Eungcheol;Kim, Yong Jin;Yang, Joo Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • In this study, the effects of inertial driving on a fuel-cut zone were analyzed by measuring the instantaneous variations of fuel consumption and speed. Thirteen sites with 2-8% downhill slopes were selected for the vehicle experiments. The vehicles were driven on the sites in two different driving modes, and the various vehicle states were measured using OBD under driving. For the analysis of the effects of inertial driving, the characteristics of fuel consumption, speed, and rpm were compared between normal and inertial driving. As a result, the fuel consumption was reduced from 24% to 78% according to the downhill grade. The amount of fuel consumption reduction was about 30cc for driving 500m downhill. Fuel cost savings amounting to 35 billion won can be achieved if inertial driving will be done in the case of Munemi-ro3. It is also believed that the reduced fuel consumption and vehicle speed through inertial driving will have considerable environmental and safety benefits.

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.