Browse > Article
http://dx.doi.org/10.5139/JKSAS.2003.31.6.072

Numerical Study on the Hydrodynamic Performance Prediction of a Turbopump Inducer  

Choi, Chang-Ho (한국항공우주연구원 터보펌프개발그룹)
Hong, Soon-Sam (한국항공우주연구원 터보펌프개발그룹)
Kim, Jin-Han (한국항공우주연구원 터보펌프개발그룹)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.31, no.6, 2003 , pp. 72-78 More about this Journal
Abstract
In the present paper, computational studies on the hydrodynamic behavior of the inducer for the rocket-engine turbopump are presented including the effect of the mass flow rate. As the mass flow rate is increased, the inducer showed better performance with weak back flows which may have deleterious effects upon the anti-cavitation ability. But the adopted inducer showed low head rise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The static pressure distributions at the shroud surface are compared with experimental results showing very good agreements except near the leading edge where strong back flows are present. The overall performance of the inducer such as, efficiency, head rise is also compared with experiments. The computational results are generally in good agreements with experimental ones near the design point, but two results show discrepancy at the high flow rate.
Keywords
rocket engine; turbopump; inducer; computation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 손동기, 구현철, 차봉준, 양수석, 이대성, 2002, "터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향," 유체기계저널, 제5권, 제1호, pp. 27-32.   과학기술학회마을   DOI   ScienceOn
2 Deshpande, M., Feng, J. and Merkle, C, L., 1994, "Cavity Flow Predictions Based on the Euler Equations," ASME Journal of Fluids Engineering, Vol. 116, pp. 36-44.   DOI   ScienceOn
3 Vaidya, N., Athavale, M. M. and Singhal, A. K., 1998, "Numerical Simulation of Cavitating Flows in an Axial Pump Using a PDF-Based Cavitation Model," ISROMAC-7, Honolulu, Hawaii.
4 Kunz, R. F., Boger, D. A., Chyczewski, T. S., Stineberg, D. R., Gibeling, H. J. and Govindan, T. R., 1999, "Multi-Phase CFD Analysis of Natural and Ventilated Cavitation About Submerged Bodies," Proceedings of ASME FEDSM-99.
5 최창호, 이기수, 김진한, 양수석, 2001, "액체로켓 인듀서의 수치해석을 통한 성능예측," 대한기계학회 춘계 학술대회 학술집, pp. 625-630.
6 최창호, 이기수, 김진한, 양수석, 이대성, 2002, "액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구," 유체기계저널, 제5권, 제2호, pp. 15-21.   과학기술학회마을   DOI
7 홍순삼, 구현철, 최창호, 차봉준, 양수석, 2002, "터보펌프 인듀서의 형상변화가 성능에 미치는 영향," 대한기계학회 2002년도 추계학술대회 강연 및 논문초록집.
8 Fine/Turbo 5.3 Manual, 2002, Numeca Inc.
9 Jakobsen, J. K., 1971, Liquid Rocket Engine Turbopump Inducers, NASA SP-8052.
10 구현철, 홍순삼, 차봉준, 양수석, 2002, "터보펌프 인듀서의 유동특성에 관한 연구," 2002 유체기계연구개발 발표회 논문집, pp. 41-46.
11 Laksminarayana, B., 1981, Analytical and Experimental Study of Flow Phenomenon Noncavitating Rocket Pump Inducers, NASA contractor Reports No. 3471.
12 Kamijo, K., Yoshida, M. and Tsujimoto, Y., 1993, "Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer," Journal of Propulsion and Power, Vol.9, No. 6, pp. 819-826.   DOI   ScienceOn
13 Brennen, C. E., 1994, Hydrodynamics of Pumps, Concepts ETt, Inc. and Oxford University Press.
14 HuzeL D. K. and Huang, D. H., 1992, Modern Engineering for Design of Liquid-Propellant Rocket Engines, AIAA Press.