• Title/Summary/Keyword: 에폭시 수지

Search Result 622, Processing Time 0.027 seconds

Synthesis of Dodecyl Phenol Novolac Epoxy Resin and Physical Properties of Coatings (Dodecyl phenol novolac 에폭시수지의 합성과 도막물성)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.615-626
    • /
    • 2016
  • In the paper, mild solvent soluble alkyl group modified epoxy resins were prepared via a three-step method; (1) the condensation reaction of dodecyl phenol (DP) and formaldehyde, (2) the crosslinking reaction of dodecyl phnol novolac compound (DPC) and bisphenol A diglycidyl ether, (3) the dodecyl phenol novolac epoxy resins containing fatty acid (DPFA) was prepared by introducing fatty acid to DPC. Equivalent ratios of DP and formaldehyde were 1.25~1.333/1.0. Equivalent ratio of DPC and bisphenol A diglycidyl ether (YD-128) was 1.0/2.0. Reactivity, viscosity, molecular weight, solvent solubility, and physical properties of DPFA were investigated. The result show that as the number of aromatic ring of DPFA increased, viscosity increased and solvent solubility improved. When we test the properties of coatings by blending the synthesized DPFA with a white pigment, DPFAC-5 using triphenylphosphine (TPP) as a ring-open catalyst showed optical performance for drying time, adhesion, hardness, impact resistance, acid resistance and storage stability.

Influence of Hydrophobic Silica on Physical Properties of Epoxy Nanocomposites for Epoxy Molding Compounds (에폭시 몰딩 컴파운드를 위한 에폭시 나노복합재료의 소수성 실리카의 영향)

  • Kim, Ki-Seok;Oh, Sang-Yeob;Kim, Eun-Sung;Shin, Hun-Choong;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • In this work, the effect of hydrophobic treated silica on the water absorption, thermal stabilities, and mechanical properties of the epoxy nanocomposites were investigated as a function of the silica content. As filler, fumed silica treated by dimethyldichlorosilane was used. It was found that the silica was well dispersed in the epoxy resins by the melt-mixing method with the addition of a silane coupling agent. The water absorption of the nanocomposites decreased with an increase of the silica content due to the effect of hydrophobic treated silica. The thermal properties, such as thermal degradation temperature, glass transition temperature ($T_g$), and coefficient of thermal expansion (CTE), of the nanocomposites were improved by the addition of silica. Furthermore, the mechanical properties of the nanocomposites, that is, the tensile strength and modulus, were enhanced with increasing silica content. This was attributed to the physically strong interaction between silica and epoxy resins.

Tuning Thermal Expansion Coefficient of Composites Containing Epoxy Resin/Inorganic Additives for Stone Conservation (에폭시 수지/무기물 첨가제 복합체의 열팽창계수 조절 및 석조문화재의 응용)

  • Choi, Yong-Seok;Chae, Il-Seok;Kang, Yong-Soo;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • The thermal expansion coefficient of epoxy/inorganic additives composites was controlled by changing the amount of the inorganic additives such as talc and fused silica. The epoxy resin comprises hydrogenated bisphenol A (HBA)-based epoxide, difunctional polyglycidyl epoxide (DPE) as a diluent and isophorone-diamine (IPDA) as a crosslinking agent, which was subsequently mixed with inorganic additives (talc and fused silica). The thermal expansion coefficient was decreased by increasing amount of inorganic additives, nearly to fresh granite. Fused silica was more effective than talc in lowering the thermal expansion coefficient. Additionally, lexural and tensile strengths of the composites were getting lower and higher with the amount of the inorganic fillers, respectively. It was thus concluded that an epoxy composite containing inorganic fillers was developed to show much lower thermal expansion coefficient, similar to fresh granite, than the neat epoxy resin, and also proper mechanical strengths for applications.

Effect of High Filler Loading on the Reliability of Epoxy Holding Compound for Microelectronic Packaging (반도체 패키지 봉지재용 에폭시 수지 조성물의 신뢰특성에 미치는 실리카 고충전 영향)

  • 정호용;문경식;최경세
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.51-63
    • /
    • 1999
  • The effects of high filler loading technique on the reliability of epoxy molding compound (EMC) as a microelectronic encapsulant was investigated. The method of high filler loading was established by the improvement of maximum packing fraction using the simplified packing model proposed by Ouchiyama, et al. With the maximum packing fraction of filler, the viscosity of EMC wart lowered and the flowability was improved. As the amount of filler in EMC increased, several properties such as internal stress and moisture absorption were improved. However, the adhesive strength with the alloy 42 leadframe decreased when the filler content was beyond the critical value. It was found that the appropriate content of filler was important to improve the reilability of EMC, and the optimum filler combination should be selected to obtain high reliable EMC filled with high volume fraction of filler.

  • PDF

Effects of Reactive Diluents on the Curing Behavior of Epoxy Resin (에폭시 수지의 경화 거동에 미치는 반응성 희석제의 영향)

  • Kim, Wan-Young;Lee, Dai-Soo;Kim, Hyung-Soon;Kim, Jung-Gee
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1030-1035
    • /
    • 1994
  • Curing behavior and glass transition temperatures of epoxy resins into which reactive diluents were added to control processability were investigated. Heat of cure generated of the epoxy resin was reduced with butyl glycidyl ether(BGE) and phenyl glycidyl ether(PGE) contents. $T_g$ of the resin was decreased with the amount of reactive diluents and it was attributed to increased molecular weight between crosslink points. Cure kinetics of the resins was studied employing autocatalytic reaction model and found that reaction constants decreased as the contents of reactive diluent was increased.

  • PDF

Surface Discharge Characteristics for Epoxy Resin in Dry-Air with Variations of Electrode Features and Epoxy Resin Size (Dry-Air 중의 전극 형상 및 에폭시수지의 크기변화에 따른 연면방전특성 연구)

  • Park, He-Rie;Choi, Eun-Hyeok;Kim, Lee-Kook;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-160
    • /
    • 2009
  • This paper shows a basic data of the surface discharge characteristics for epoxy resin in Dry-Air as being focused on environmentally friendly insulating Gas. Used electrodes are needle to plane, sphere to plane and KS M3015 electrodes. With the changing electrodes in same condition, we can obtain different creeping lengths, surface discharge voltages and surface dielectric strengths, respectively. Surface dielectric strengths of Needle to plane electrodes are more higher than the others. Moreover, it is considered that the surface discharge characteristics with variation of epoxy resin thickness and diameter. Surface discharge voltage increases as the thickness and the diameter of epoxy resin.

Cure Kinetics, Thermal Stabilities and Rheological Properties of Epoxy/phenol Resin Blend System Initiated by Cationic Thermal Latent Catalyst (양이온 열잠재성 개시제에 의한 에폭시/페놀 수지 브랜드 시스템의 경화 동력학.열안정성 및 유변학적 특성)

  • 박수진;서민강;이재락
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • The effects of 1 wt.% N-benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator and blend compositions composed of 0, 5, 10, 20 and 40 wt.% of phenol-novolac resin to epoxy resin were investigated in terms of cure kinetics, thermal stabilities and rheological properties. Thermal latent properties of BPH were measured from the conversion as a function of reaction temperature on a dynamic DSC. This cationic BPH system turned out to be an effective thermal latent initiator in the epoxy-phenol curing system. And the increase of phenol-novolac resin concentration led to the decrease in the latent temperature and to the increase of cure activation energy ($E_a$) of the blend system. The thermal stability and activation energy ($E_t$) for decomposition, gel-time and activation energy ($E_c$) for cross-linking from rheometer increased within the composition range of 20~40 wt.% of phenol-novolac resin. This implies that the three-dimensional cross-linking may take place among hydroxyl group within phenol resin, epoxide ring within epoxy resin and BPH.

  • PDF

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

A Study on the Dielectric Breakdown Strength Characteristics of Epoxy-$SiO_2$ Compound Material for Electric Installation (전기설비용 에폭시-$SiO_2$ 복합재료의 절연파괴 특성에 관한 연구)

  • 김재환;박창옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1991
  • In this study the investigation were carried out on short-term breakdown characteristics of the compound material dependent on change of filler quantity, ambient temperature(room temperature~[$190[^{\circ}C$]) and kinds of voltage sources for the compound materials of Bisphenol- A epoxy resins filled with $SiO_2$ particles. As the results, obtained the dielectric breakdown strength generally decrease as increasing the quantity of filler and the distance, spacing of each's particles, decrease as increasing the quantity of filler, when the distance is less than [$7.5\mu\textrm{m}$], dielectric breakdown strength is nearly constant. In the case on AC voltage dielectric strength of filled epoxy resins is stronger than nonfilled epoxy resins on temperature region more than $130[^{\circ}C$].

  • PDF

Interfacial Adhesion between Screen-Printed Ag and Epoxy Resin-Coated Polyimide (에폭시수지가 도포된 폴리이미드와 스크린 프린팅 Ag 사이의 계면접착력 평가)

  • Park, Sung-Cheol;Kim, Jae-Won;Kim, Ki-Hyun;Park, Se-Ho;Lee, Young-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The interfacial adhesion strengths between screen-printed Ag film and epoxy resin-coated polyimide were evaluated by $180^{\circ}$ peel test method. Measured peel strength value was initially around $164.0{\pm}24.4J/m^2$, while the heat treatment during 24h at $120^{\circ}C$ increase peel strength up to $220.8{\pm}19.2J/m^2$. $85^{\circ}C/85%$ RH temperature/humidity treatment decrease peel strength to $84.1{\pm}50.8J/m^2$, which seems to be attributed to hydrolysis bonding reaction mechanism between metal and adhesive epoxy resin coating layer.