• Title/Summary/Keyword: 에너지 소모

Search Result 1,497, Processing Time 0.03 seconds

An Analysis of Consumer Emotion for Product Planning of Smart Clothing (스마트 의류 상품 기획을 위한 감성 효과 분석)

  • Cho, Hyun-Seung;Kim, Jung-Ho;Koo, Hye-Ran
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.49-56
    • /
    • 2014
  • This study aims at providing basic data for product planning to design smart clothing and to develop applications, focusing on consumers by satisfying their emotions through analyzing emotional factors on smart clothing, comparing emotional differences between conventional clothing and it, reviewing changes of consumers' emotion by integrating the product and clothing and researching differences of preference and purchase intention between smart clothing and traditional one. As the results of the study, emotional factors for smart clothing were analyzed with total 6 including 'technical', 'comfort', 'aesthetic', 'modern', 'fun' and 'multiple' factors. Among them, except for 'comport', five emotional factors showed emotional factors between conventional sport-casual clothing and smart clothing. That is, emotional factors of 'technical', 'aesthetic', 'modern', 'fun' and 'multiple' were emphasized more in smart clothing than conventional ones, indicating that they should be considered in planning products of smart clothing. Though there was no significant difference of preference between smart clothing and conventional clothing, in case of comparison of averages, that of smart clothing was a little higher. For purchase intention, smart clothing was lower than the conventional clothing. So preference seems to be not directly related to consumers' immediate purchase. To make consumers' interests and preference to result in purchase, it is necessary to develop smart clothing with more various applications and to prepare commercializing strategies. As the results of the analysis on free-descriptive questionnaire survey, consumers were interested in development of smart clothing to help diet with functions including energy harvesting from body motion, calorification and perspiration, measurement of motion and calory consumption as well as health-care type smart clothing to measure heartbeat and ECG. Reflecting these requirements from the consumers, they should be utilized as guidance to develop smart clothing in the future.

In-network Aggregation Query Processing using the Data-Loss Correction Method in Data-Centric Storage Scheme (데이터 중심 저장 환경에서 소설 데이터 보정 기법을 이용한 인-네트워크 병합 질의 처리)

  • Park, Jun-Ho;Lee, Hyo-Joon;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.315-323
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), various Data-Centric Storages (DCS) schemes have been proposed to store the collected data and to efficiently process a query. A DCS scheme assigns distributed data regions to sensor nodes and stores the collected data to the sensor which is responsible for the data region to process the query efficiently. However, since the whole data stored in a node will be lost when a fault of the node occurs, the accuracy of the query processing becomes low, In this paper, we propose an in-network aggregation query processing method that assures the high accuracy of query result in the case of data loss due to the faults of the nodes in the DCS scheme. When a data loss occurs, the proposed method creates a compensation model for an area of data loss using the linear regression technique and returns the result of the query including the virtual data. It guarantees the query result with high accuracy in spite of the faults of the nodes, To show the superiority of our proposed method, we compare E-KDDCS (KDDCS with the proposed method) with existing DCS schemes without the data-loss correction method. In the result, our proposed method increases accuracy and reduces query processing costs over the existing schemes.

Changes on Initial Growth and Physiological Characteristics of Larix kaempferi and Betula costata Seedlings under Elevated Temperature (온도 증가에 따른 일본잎갈나무와 거제수나무 유묘의 초기 생장과 생리 특성의 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil-Nam;Lee, Jae-Cheon;Yun, Chung-Weon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2012
  • Larix kaempferi and Betula costata seedlings were grown under an elevated temperature ($27^{\circ}C$) for four weeks to understand initial changes on physiological characteristics caused by temperature rising in connection with global warming. At the end of the treatment, growth performance, leaf pigment content, antioxidative enzyme activities and malondialdehyde (MDA) content were measured and analyzed. Relative growth rates of the height of two tree species grown under elevated temperature ($27^{\circ}C$) were lower than those of control ($24^{\circ}C$) and dry weights of leaves, stems and roots were also reduced at higher temperature. Particularly, the root growth reduction of two tree species increased markedly at $27^{\circ}C$ over the study period, which increased the ratio of shoot to root. Under higher temperature, leaf pigment contents decreased, whereas anti-oxidative enzyme activities such as ascorbate peroxidase (APX) and catalase (CAT) increased as compared with the control. But MDA content was not affected by elevated temperature. In conclusion, the elevated temperature leads to root growth reduction, restriction of nutrient uptake from soil and the reduction of leaf pigment contents, which can inhibit the aboveground growth. In addition, higher temperature might act as a stress factor that causes growth reduction through the increase of energy consumption during a growth period.

The Relationship of Repeated Racehorse Simulator Exercise on Plasma Ghrelin and Hormons in Jockeys (반복적인 모형마 운동에 따른 기수의 혈장 그렐린과 호르몬들의 관계)

  • Zhang, Seok-Am
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1756-1762
    • /
    • 2011
  • The aim of the present investigation was to investigate the relationship of repeated racehorse simulator exercise on plasma ghrelin and hormons in fasted jockeys. The fasted jockeys and apprentice jockeys performed $1^{st}$ short distance 1000m, $2^{nd}$ middle distance 1700m and $3^{rd}$ long distance 2300m racehorse simulator exercises, and venous blood samples were obtained before, immediately after. In addition to ghrelin concentration, leptin, insulin, insulin-like growth factor-1 (IGF-1), and cortisol values were measured. Pearson correlation coefficients revealed plasma ghrelin and insulin concentration in apprentice jockeys r=.55 after the $3^{rd}$ exercise. There were relationships between significant relationships (p<.05) between plasma ghrelin and leption concentration in jockeys r=.73, and between plasma ghrelin and cortisol concentration in apprentice jockeys r=.64 before exercise. There was no difference in the ghrelin, leptin, insulin and IGF-1 concentration responses to the consecutive exercise. The IGF-1 and cortisol level showed significant (p<.05)difference between groups. In conclusion, these results suggest that negative energy balance induced by of repeated racehorse simulator exercise elicits a metabolic response with positive relationship in plasma ghrelin and insulin in apprentice jockeys after the $3^{rd}$ exercise.

TeloSIM: Instruction-level Sensor Network Simulator for Telos Sensor Node (TeloSIM: Telos 형 센서노드를 위한 명령어 수준 센서네트워크 시뮬레이터)

  • Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1021-1030
    • /
    • 2010
  • In the sensor network, many tiny nodes construct Ad-Hoc network using wireless interface. As this type of system consists of thousands of nodes, managing each sensor node in real world after deploying them is very difficult. In order to install the sensor network successfully, it is necessary to verify its software using a simulator beforehand. In fact Sensor network simulators require high fidelity and timing accuracy to be used as a design, implementation, and evaluation tool of wireless sensor networks. Cycle-accurate, instruction-level simulation is the known solution for those purposes. In this paper, we developed an instruction-level sensor network simulator for Telos sensor node as named TeloSlM. It consists of MSP430 and CC2420. Recently, Telos is the most popular mote because MSP430 can consume the minimum energy in recent motes and CC2420 can support Zigbee. So that TeloSlM can provide the easy way for the developers to verify software. It is cycle-accurate in instruction-level simulator that is indispensable for OS and the specific functions and can simulate scalable sensor network at the same time. In addition, TeloSlM provides the GUI Tool to show result easily.

Optimization Study for the Production of 6-Shogaol-rich Ginger (Zingiber officinale Roscoe) under Conditions of Mild Pressure and High Temperature (가압조건에서 생강 유래 6-shogaol 변환을 위한 가열 조건 최적화)

  • Park, Ho-Young;Ha, Sang Keun;Choi, Jiwon;Choi, Hee-Don;Kim, Yoonsook;Park, Yongkon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.588-592
    • /
    • 2014
  • Under optimized condition mild pressure in combination with specific temperature for heat treatment transform the 6-gingerol into 6-shogaol. The purpose of this study was to optimize the conditions used for heat treatment under pressure for increasing 6-shogaol content in ginger (Zingiber officinale Roscoe). A central composite experimental design was used to evaluate the effects of application temperature ($70-130^{\circ}C$) and temperature-holding time (95-265 min) on the transformation of 6-shogaol. The experimental values were shown to be in significantly good agreement with the predicted values (adjusted determination coefficient, $R^2{_{Adj}}=0.9857$). 6-Shogaol content increased as the application temperature and temperature-holding time increased. By analyzing the response surface plots, the optimum conditions of heat treatment (temperature and time) for increasing 6-shogaol content were found to be $127^{\circ}C$ and 109 min, respectively. Under these optimal conditions, the predicted 6-shogaol content was 3.98 mg/g dried ginger. The adequacy of the model equation for predicting the optimum response values was effectively verified by the validation data.

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

Daily Variation of Particulate Organic Carbon in Wonmun Bay on the South Coast of Korea in Late Summer (늦여름 원문만 굴양식장 입자유기탄소의 일변동)

  • KANG Chang-Keun;LEE Pil-Yong;KIM Pyoung-Joong;CHOI Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 1993
  • Daily variation of particulate organic carbon(POC) and some factors controlling its level were examined for a semi-enclosed bay(Wonmun Bay, south coast of Korea), in which a lot of suspended oyster culture farms existed, in September, 1992. Observations were made at hourly interval. In spite of the relatively short survey period, strong short-term variation of POC concentration could be observed. Concentrations of POC were the range of $58{\sim}582{\mu}g/l(average 272{\mu}g/l)$ and their variation pattern was similar to those of chlorophyll a with the range of $0.90{\sim}7.25{\mu}g/l(average 3.35{\mu}g/l)$. The low C/N ratios also suggested that marine microalgae was a major component of POC for Wonmun Bay. Primary production, average $1.97\;gC/m^2/day$, was the main source of POC beacuse the supply of POC via freshwater input and exchange with the outer part of the bay was little. Oyster population also excreted a small amount of POC. About $40\%$ of produced POC was decomposed heterotrophically. Another important cause for the fluctuation of observed POC was tidal cycle. Considerable POC, which amounted $37\%$ of produced POC, was lost from the bay due to flushing by tidal cycle. It was also calculated that about $16\%$ was transported onto the sediment. It seemed that a part of POC was consumed by oyster and other heterotrophs.

  • PDF

Solubilization of Arabinogalactan by Extrusion from Portulaca oleracea L. and Its In Vitro Antioxidant Activity (마치현 아라비노갈락탄의 압출 수용화와 항산화 특성)

  • Choi, Ae-Jin;Jee, Ho-Kyun;Ko, Bo Sung;Kim, Yangha;Lee, Soo-Jeong;Kim, Chul-Jin;Cho, Yong-Jin;Kim, Chong-Tai
    • Food Engineering Progress
    • /
    • v.13 no.3
    • /
    • pp.169-175
    • /
    • 2009
  • Water soluble polysaccharides (WSP) and arabinogalactan of Portulaca oleracea L. (POL) were increased after extrusion and commercial cellulase treatment. Arabinose and galactose content increased more about 1.5 times than those of raw POL, and rhamnose also increased about 2.6 times in WSP. High molecular weight fraction (I) of POL depending on extrusion condition including Ext I, Ext II and Ext III degraded into low molecular weight fraction (II) about 37, 29, and 26%, respectively, ranged from 67,000-69,000 Da of molecular weight. Especially, the molecular weight and composition of WSP with extruded, were increased from 9 to 13% in low molecular weight fraction, compared to those of raw POL. Solubilization and degradation of polysaccharides were a directly propotional to specific mechanical energy in POL extrusion. WSP obtained by extrusion at Ext I and Ext II were found to be effective antioxidants in different in vitro assays with regards to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC). However, these results suggest that WSP obtained using extrusion and subsequent enzymatic treatment may be an effective method to produce arabinogalactan from POL and be used as a functional food ingredients.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.