Solubilization of Arabinogalactan by Extrusion from Portulaca oleracea L. and Its In Vitro Antioxidant Activity

마치현 아라비노갈락탄의 압출 수용화와 항산화 특성

  • Choi, Ae-Jin (Department of Herbal Crop Research, National Institute of Horiculture & Herbal Science, RDA) ;
  • Jee, Ho-Kyun (Bio-Nano Research Group, Korea Food Research Institute) ;
  • Ko, Bo Sung (Seoul Pharmal Laboratories, Inc.) ;
  • Kim, Yangha (Department of Food Nutrition, Ewha Womans University) ;
  • Lee, Soo-Jeong (Department of Food and Nutrition, Bucheon College) ;
  • Kim, Chul-Jin (Bio-Nano Research Group, Korea Food Research Institute) ;
  • Cho, Yong-Jin (Bio-Nano Research Group, Korea Food Research Institute) ;
  • Kim, Chong-Tai (Bio-Nano Research Group, Korea Food Research Institute)
  • Received : 2009.01.30
  • Accepted : 2009.07.24
  • Published : 2009.08.31

Abstract

Water soluble polysaccharides (WSP) and arabinogalactan of Portulaca oleracea L. (POL) were increased after extrusion and commercial cellulase treatment. Arabinose and galactose content increased more about 1.5 times than those of raw POL, and rhamnose also increased about 2.6 times in WSP. High molecular weight fraction (I) of POL depending on extrusion condition including Ext I, Ext II and Ext III degraded into low molecular weight fraction (II) about 37, 29, and 26%, respectively, ranged from 67,000-69,000 Da of molecular weight. Especially, the molecular weight and composition of WSP with extruded, were increased from 9 to 13% in low molecular weight fraction, compared to those of raw POL. Solubilization and degradation of polysaccharides were a directly propotional to specific mechanical energy in POL extrusion. WSP obtained by extrusion at Ext I and Ext II were found to be effective antioxidants in different in vitro assays with regards to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC). However, these results suggest that WSP obtained using extrusion and subsequent enzymatic treatment may be an effective method to produce arabinogalactan from POL and be used as a functional food ingredients.

마치현을 압출성형 및 효소분해 처리할 경우 원료에 비하여 수용성 고분자 다당류 및 아라비노갈락탄 함량이 증가하였다. 마치현 수용성 다당류 중 아라비노스와 갈락토오스의 함량이 원료 마치현보다 1.5배 증가하였으며, 람노스 함량도 2.6배 증가한 유의적인 결과를 보였다. 압출성형 처리효과로 고분자 분획(I)은 Ext I, Ext II 및 Ext III 시료에서 각각 37, 29 및 26% 정도 저분자 분획(II)으로 분자 재배열이 발생함과 동시에 66,000-74,000 Da범위의 분자량을 갖는 다당체로 구조변형 되었다. 특히, 저분자 분획의 분자량과 조성비에 있어서 압출성형 처리한 마치현은 처리하지 않은 원료에 비하여 9-13% 정도 증가하여 유의성이 있었다. 이같은 다당류의 붕괴 및 변형 정도는 압출성형 처리시 투입된 기계적 소모 에너지와 비례적인 상관성을 보였다. 압출성형 처리를 한 수용성 다당류의 경우 압출성형 처리온도 120$^{\circ}C$ 및 140$^{\circ}C$인 경우 자유 라디칼소거활성능이 압출성형 처리하지 않은 원료에 비하여 높게 증가하였다. 상기와 같은 마치현 유래 아라비노갈락탄의 항산화 활성 기능의 결과에 비추어볼 때 보다 폭 넓은 범위의 분자량을 갖는 분획물 제조 및 생리활성 평가실험을 지속적으로 추진한다면 새로운 기능성 식품소재로 활용할 가치가 있다고 기대된다.

Keywords

Acknowledgement

Grant : 식품나노기술개발사업

Supported by : 지식경제부

References

  1. Amin ES, El-Deeb SM. 1977. Isolation of Portulaca oleracea(REGLA) mucilage and identification of its structure. Carbohyd.Res. 56: 123-128 https://doi.org/10.1016/S0008-6215(00)84243-3
  2. Bae JH. 1999. Effect of Portulaca oleracea extract on removingnicotine component of tabacco. J. Korean Soc. Food Sci. Nutr.28: 670-612
  3. Chan K, Islam MW, Kamil M, Radhakrishman MNMZ, HabibullahM, Attas A. 2000. The analgesic and anti-inflammatoryeffects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J.Ethanopharmacol. 73: 445-451 https://doi.org/10.1016/S0378-8741(00)00318-4
  4. Chen J, Shi YP, Liu JY. 2003. Determination of noradrenaline anddopamine in Chinese herbal extracts from Portulaca oleracea L.by high-performance liquid chromatography. J. Chromatogr. A1003: 127-132 https://doi.org/10.1016/S0021-9673(03)00786-6
  5. Choi EM, Kim AJ, Hwang JK. 2005. Enhanced immune cellfuctions and cytokine production after in vitro stimulation witharabinoxylans fraction from rice bran. Food Sci. Biotechnol. 14:479-486
  6. Choi AJ, Kim CJ, Cho YJ, Cha JY, Hwang JK, Kim IH, Kim CT.2007. Characterization of polysaccharides obtained frompurslane (Portulaca olerace L.) using different solvents andenzymes. Food Sci. Biotechnol. 16: 928-934
  7. D'Adamo P. 1996. Larch arabinogalactan. J. Naturopath Med. 6:33-37
  8. Sridhar R, Lakshminarayana G. 1993. Lipid classes, fatty acids,and tocopherols of leaves of six edible plant species. J. Agric.Food Chem. 41: 61-63 https://doi.org/10.1021/jf00025a013
  9. Dubois M, Gilles KA, Hamilton JK, Rebers, PA, Smith F. 1956.Colorimetric method for determination of sugars and relatedsubstances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  10. Eriksson I, Andersson R, Aman P. 1997. Extraction of pecticsubstances from dehulled rapeseed. Carbohydr. Res. 301: 177-185 https://doi.org/10.1016/S0008-6215(97)00096-7
  11. Garti N, Aserin A, Slavin Y. 1999a. Portulaca oleracea gum andcasein interactions and emulsion stability. Food Hydrocolloid.13: 127-138 https://doi.org/10.1016/S0268-005X(98)00077-0
  12. Garti N, Slavin Y, Aserin A. 1999b. Competive adsorption in O/W emulsions stabilized by the new Portulaca oleracea hydrocolloidand nonionic emulsifiers. Food Hydrocolloid. 13: 139-144 https://doi.org/10.1016/S0268-005X(98)00081-2
  13. Habtemarian S, Harvey AL, Waterman PG. 1993. the musclerelaxant properties of Portulaca oleracea are associated withhigh concentrations of potassium ions. J. Ethanopharmacol. 40:195-200 https://doi.org/10.1016/0378-8741(93)90068-G
  14. Jee HK, Cho YJ, Kim CT, Jang YS, Kim CJ. 2006. Increase ofsolubility ginseng radix by extrusion cooking. Korean J. FoodSci. Technol. 38: 361-368
  15. Kelly GS. 1999. Larch arabinogalactan: Clinical relevance of anovel immune-enhancing polysaccharide. Alter. Med. Rev. 4:96-103
  16. Lim JP, Suh ES. 2000. Hepatoprotective, diuretic and anti-inflammatoryactivities of the extract from Portulaca oleracea Linne.Korean J. Med. Crop Sci. 8: 189-193
  17. Liu L, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhang R. 2000.Fatty acids and β-carotene in Australian pulsane (Portulaca oleracea)varieties. J. Chromatogr. A. 893: 207-213 https://doi.org/10.1016/S0021-9673(00)00747-0
  18. Lee TB. 1999. Illustrated flora of Korea. Hyangmunsa, Seoul,Korea, p. 324
  19. Lee MS, Kim CT, Kim CJ, Cho YJ, Kim YH. 2006. Effects ofPortulaca oleracea L. extract on lipolysis and hormone sensitivelipase (HSL) gene expression in 3T3-L1 adipocytes. Korean J.Nutr. 39: 742-747
  20. Malek F, Boskabady MH, Borushaki MT, Tohidi M. 2004. Bronchodilatoryeffect of Portulaca oleracea in airways of asthmaticpatients. J. Ethnopharamacol. 93: 57-62 https://doi.org/10.1016/j.jep.2004.03.015
  21. Mohamed A, Hussein A. 1994. Chemical composition of purslane(Portulaca oleracea). Plant Food Hum. Nutr. 45: 1-9 https://doi.org/10.1007/BF01091224
  22. Na K, Yun JM, Choi MJ, Hwang JK. 2004. Extraction of pecticpolysaccharides from extruded ginseng fiber. Food Sci. Biotechnol.13: 486-489
  23. Omara-Alwala T, Mebrahtu T, Prior DE, Ezekwe M. 1991.Omega-three fatty acids in pulsane (Portulaca oleracea) tissues.JAOCS 68: 198-199 https://doi.org/10.1007/BF02657769
  24. Parry O, Marks JA, Okwuasaba FK. 1993. The skeletal muscleralaxant action of Portulaca oleracea: role of potassium ions. J.Ethanopharmacol. 40: 187-194 https://doi.org/10.1016/0378-8741(93)90067-F
  25. Perez S, Mazeau K, Penhoat CH. 2000. The three-dimensionalstructures of the pectic polysaccharides. Plant Physiol. Biochem.38: 37-55 https://doi.org/10.1016/S0981-9428(00)00169-8
  26. Sakai N, Inada K, Okamoto M, Shizuri Y, Fukuyama Y. 1996.Portuloside A, a monoperpene glucoside, from Portulaca oleracea.Phytochemistry 42: 1625-1628 https://doi.org/10.1016/0031-9422(96)00202-6
  27. Seo Y, Shin J, Cha HJ, Kim YA, Ahn JW, Lee BJ, Lee DS. 2003.A new monoterpene glucoside from Portulaca oleracea. Bull.Korean Chem. Soc. 24: 1475-1477 https://doi.org/10.5012/bkcs.2003.24.10.1475
  28. Sridhar R, Lakshminarayana G. 1993. Lipid classes, fatty acids,and tocopherols of leaves of six edible plant species. J. Agric.Food Chem. 41: 61-63 https://doi.org/10.1021/jf00025a013
  29. Theander O, Aman P, Westerlund E, Anderson R, Pettersson D.1995. Total dietary fiber as neutral sugar residues, uronic acidresidue, and Klason lignin (The Uppsala method): Collaborativestudy. J. AOAC Int. 78: 1030-1044
  30. Van den Berg R, Haenen GRMM, Van den Berg H. 1999. Applicabilityof an improved Trolox equivalent antioxidant capacityassay for evaluation of antioxidant capacity measurements ofmixtures. Food Chem. 66: 511-517 https://doi.org/10.1016/S0308-8146(99)00089-8
  31. Yu KW, Hwang JH. 2001. Characterization of bone marrow cellproliferating arabinogalactan through peyer's patch cells fromrhizomes of atractylodes lancea DC. J. Food Sci. Nutr. 6: 180-186