• Title/Summary/Keyword: 에너지교환

Search Result 750, Processing Time 0.025 seconds

Study on Thermal Performance of Energy Textile in Tunnel (터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구)

  • Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1907-1914
    • /
    • 2013
  • Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

The Development of Glass Enamell Coating Heat Exchanger (법랑코팅 열교환기 개발)

  • 홍기석;우상국;한인섭;서두원;이기성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.141-146
    • /
    • 2002
  • 폐가스-공기 열교환 방식의 열교환기는 각종 산업용 요ㆍ로나 보일러 등에서 배출되는 폐열을 예열공기로 회수하여 연소용공기로 사용하는 에너지 절약방법으로 현재와 같이 고유가가 지속되고, 전 세계적인 공업화에 의한 고도성장과 생활수준의 향상에 따른 에너지 수요 증가, 에너지자원의 매장량의 한계 및 지역적 편중, 산유국이 밀집되어 있는 중동지역의 불투명한 정세를 미루어 볼 매 석유수급, 고유가의 불안요인은 더욱 증가할 것으로 추정된다.(중략)

  • PDF

현장탐방 - 광역상수를 이용한 수온차 수축열 냉난방시스템

  • 대한설비건설협회
    • 월간 기계설비
    • /
    • s.278
    • /
    • pp.50-53
    • /
    • 2013
  • 최근 온실가스 배출량 감축 의무화, 고유가 지속에 따른 에너지 시장의 불안, 화석연료의 고갈 등에 따라 신재생에너지에 대한 관심이 크게 증대하고 있다. 따라서 에너지효율 개선을 위해 신축 빌딩을 중심으로 신재생에너지 설비가 크게 주목받고 있다. 본지는 (주)정도설비가 서울시 송파구 신천동 일대 L건설현장에서 시공중인 '광역상수를 이용한 수온차 수축열 냉난방시스템'에 대해 알아본다. 이 시스템은 송파대로를 통과하는 광역상수도 배관(800mm)내 원수(50,000톤/일)의 일정 수온차를 이용해 열교환 후 냉난방에 이용하는 것으로, 건물의 전체 냉난방부하의 약 12%를 담당(설치용량 약3,000RT)할 예정이며 연간 6,800Mwh의 에너지를 절감할 수 있을 것으로 기대하고 있다.

  • PDF

용해 납 흐름 배터리용 여러 카본 전극의 에너지 효율 특성 비교

  • Min, Hyeong-Seop;Yang, Min-Gyu;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.59.1-59.1
    • /
    • 2009
  • 레독스 흐름 배터리 (Redox Flow Battery)는 외부의 탱크 등에 저장해 둔 활성물질(이온 가수가 변화는 금속) 의 용액을 펌프로 전해셀에 공급하여 충전 방전하는 배터리로 신재생 에너지인 풍력과 태양광 발전, 야간의 잉여 전력 저장 등 대용량 전력 저장 장치로 관심이 높아지고 있다. 대표적인 레독스 흐름 배터리로 알려진 바나듐 레독스 흐름 배터리는 이온 교환막 사용으로 인하여 전기전도도, 기계적 강도, 투과도 및 전해질 내의 화학적 안정성 등 여러 가지 문제점과 함께 비용 문제점을 야기한다. 하지만 새로운 용해 납 레독스 흐름 배터리는 이온 교환막을 사용하지 않아 바나듐 레독스 흐름 배터리의 문제점 및 시설비가 절약되는 장점이 있어 새로이 연구되지고 있다. 본 연구는 레독스 흐름 배터리에 주로 이용되는 카본 전극재료의 따라 형성되는 Pb, $PbO_2$ 박막의 미세 구조를 및 에너지 효율 특성을 분석하였다. 실험은 half-cell로 이루어졌으며 작업전극은 Carbon felt, Ordered Graphite, Disordered Graphite, Glassy Carbon 등을 여러 카본 재료를 사용하였고, 상대전극은 Pt, 기준전극으로 Ag/AgCl를 사용하여 Cyclic Voltammetry특성과 충방전 특성을 연구하였다. 전해질은 Lead Carbonate ($PbCO_3$)+Methanesulfonic acid ($CH_3SO_3H$) 들어간 수용성 전해질을 교반을 통해 이용하였다. 여러 carbon 전극재료와 생성된 Pb, $PbO_2$ 막의 표면구조, 미세구조, 상들의 변화는 XRD, SEM, EDX, Raman등을 통하여 분석하였으며, 전기화학 공정의 변수와 전극에 따른 에너지 효율특성에 대하여 고찰해 보았다.

  • PDF

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System (Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향)

  • LU, LIXIN;DAI, GUANXIA;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis (알칼리 수전해를 위한 상용 음이온교환막의 고온 특성)

  • JANG, SU-YOEN;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

XPS Studies for O1S Electrons of Ion Exchanged Zeolite X and Y (이온교환된 X형 및 Y형 제올라이트의 O1S 전자에 대한 X선 광전자분광학적 해석)

  • Kim, Myung-chul;Kim, Jong-Taik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.240-246
    • /
    • 1992
  • The electronic structure of oxygen atom of cation-exchanged zeolite was investigated by utilizing X-ray photoelectron spectroscopy(XPS). The obtained $O_{1S}$ spectra of $Na^+-$, $Fe^{2+}-$ and $Fe^{3+}-$ exchanged zeolite X and Y were deconvoluted to demonstrate electronic binding energy of framework oxygens. There were 2-3 bands in each spectrum. The characteristics of separated band have been studied in terms of binding energy and relative area of $O_{1S}$ electron with respect to the exchanged cation. Those bands were assigned to the bridged oxygen in framework (band 1), cation bonded oxygen in cationic site (band 2) and oxygen in water coordinated to the cation (band 3) each other. The band 1 occupying the majority area of $O_{1S}$ spectrum was shifted to higher region on binding energy according to the decrease of Al content in zeolite.

  • PDF