Facial expression recognition technology that has potentialities for applying various fields is appling on the man-machine interface development, human identification test, and restoration of facial expression by virtual model etc. Using sequential facial images, this study proposes a simpler method for detecting human facial expressions such as happiness, anger, surprise, and sadness. Moreover the proposed method can detect the facial expressions in the conditions of the sequential facial images which is not rigid motion. We identify the determinant face and elements of facial expressions and then estimates the feature regions of the elements by using information about color, size, and position. In the next step, the direction patterns of feature regions of each element are determined by using optical flows estimated gradient methods. Using the direction model proposed by this study, we match each direction patterns. The method identifies a facial expression based on the least minimum score of combination values between direction model and pattern matching for presenting each facial expression. In the experiments, this study verifies the validity of the Proposed methods.
Nowadays, CCTV can be come across easily in public institutions, banks, and etc. These CCTV play very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. Interpolation is usually used for the enlargement and recovery of the image in this case. However, it has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse. This paper uses FDP(Facial Definition Parameter) proposed by the MPEG-4 SNHC FBA group and introduces a new algorithm that uses face outline information of the original image based on the FDP, which makes it possible to recover better than the known methods until now.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.5
/
pp.1-8
/
2017
Recently, with the development of ICT technology such as cloud and mobile, image utilization through social networks is increasing rapidly. These images contain personal information, and personal information leakage accidents may occur. As a result, studies are underway to recognize and mask personal information in images. However, optical character recognition, which recognizes personal information in images, varies greatly depending on brightness, contrast, and distortion, and Korean recognition is insufficient. Therefore, in this paper, we design and implement a personal information identification and masking system based on image recognition through deep learning application using CNN algorithm based on optical character recognition method. Also, the proposed system and optical character recognition compares and evaluates the recognition rate of personal information on the same image and measures the face recognition rate of the proposed system. Test results show that the recognition rate of personal information in the proposed system is 32.7% higher than that of optical character recognition and the face recognition rate is 86.6%.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.44
no.3
/
pp.98-107
/
2007
For high-dimensional pattern recognition, such as face classification, the small number of training samples leads to the Small Sample Size problem when the number of pattern samples is smaller than the number of dimensionality. Recently, various LDA-extensions have been developed, including LDA, PCA+LDA, and Direct-LDA, to address the problem. This paper proposes a method of improving the classification efficiency by increasing the number of (sub)-classes through pre-clustering a training set prior to the execution of Direct-LDA. In LDA (or Direct-LDA), since the number of classes of the training set puts a limit to the dimensionality to be reduced, it is increased to the number of sub-classes that is obtained through clustering so that the classification performance of LDA-extensions can be improved. In other words, the eigen space of the training set consists of the range space and the null space, and the dimensionality of the range space increases as the number of classes increases. Therefore, when constructing the transformation matrix, through minimizing the null space, the loss of discriminatve information resulted from this space can be minimized. Experimental results for the artificial data of X-OR samples as well as the bench mark face databases of AT&T and Yale demonstrate that the classification efficiency of the proposed method could be improved.
Proceedings of the Korea Contents Association Conference
/
2004.11a
/
pp.333-338
/
2004
Today CCTV can be come across easily in public institutions, banks and etc. These CCTV plays very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording a image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. The interpolation is usually used for the enlargement and recovery of the image. This interpolation has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse than before. This paper uses FDP(Face Definition Parameter) of MPEG-4 SNHC FBA group and introduces a new algorithm that the face outline of a face image using Vector Descriptor based on the FDP makes possible better image recovery than the known methods until now.
Kim, Jason;Lee, Sung Jae;Kim, Byoungsub;Lee, Sang-Woo
Review of KIISC
/
v.25
no.4
/
pp.43-50
/
2015
바이오인식기술은 사람의 지문 얼굴 홍채 정맥 등 신체적 특징(Physiological characteristics) 또는 음성 서명 자판 걸음걸이 등 행동적 특징(Behavioral characteristics)을 자동화된 IT 기술로 추출 저장하여 다양한 IT 기기로 개인의 신원을 확인하는 사용자 인증기술이다. 2001년 미국의 911 테러사건으로 인하여 전 세계 국제공항 항만 국경에서 지문 얼굴 홍채 등 바이오정보를 이용한 출입국심사가 보편화됨과 동시에 ISO/IEC JTC1 SC37(바이오인식) 국제표준화기구를 중심으로 표준화가 급속도로 진행되어 왔다. 최근 들어 스마트폰 테블릿 PC 등 모바일기기에 지문 얼굴 등 바이오정보를 탑재하여 다양한 모바일 응용서비스를 가능하게 해주는 모바일 바이오인식 응용기술이 전 세계적으로 개발 보급되고, 삼성전자 페이팔 중심으로 바이오인식기술을 이용한 모바일 지급결제솔루션에 대한 사실표준화협의체인 FIDO, ITU-T SG17 Q9(텔레바이오인식) 국제표준화기구를 중심으로 표준화가 진행되고 있다. 특히 이러한 모바일 바이오인식기술은 스마트폰을 통한 비대면 인증기술 수단으로서 핀테크의 중요한 요소기술로 작용될 전망이다. 한편, 위조지문 등 전통적인 바이오인식 기술의 위변조 위협으로 인한 우려도 증폭됨에 따라 스마트워치 등 웨어러블 디바이스에서 살아있는 사람의 심박수(심전도), 뇌파 등의 생체신호를 측정하여 스마트폰을 통하여 개인을 식별하는 차세대 바이오인식기술로 진화중에 있다. 본고에서는 바이오인식기술의 변천사와 함께 국내외 모바일 바이오인식기술 동향과 표준화 추진현황을 살펴보고, 지난 2015년 5월 29일 발족한 KISA "모바일 생체신호 인증기술 표준연구회"를 통하여 뇌파 심전도 등생체신호를 이용한 차세대 바이오인식 기술 및 표준화 계획을 수립하여 향후 바이오인식기반의 비대면 인증기술에 대한 추진전략을 모색하고자 한다.
Journal of the Korea Society of Computer and Information
/
v.26
no.5
/
pp.1-8
/
2021
Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.
As IoT Technology develops and Era of Hyperconnectivity comes, various kinds of customized services became available. As a next-generation display, a smart mirror accesses multimedia devices and provides various services, so it can serve as a social learning tool for the children and the old ones, as well as adults who need information. Smart Mirror must be able to identify users for individualized services. However, since the Smart Mirror is an easily accessible device, there is a possibility that information such as an individual's pattern and habit stored in the smart mirror may be exposed to the outside. Also, the other possibility of leakage of personal location information is through personal schedule or appointment stored in the smart mirror, and another possibility that privacy can be violated is through checking the health state via personal photographs. In this research, we propose a system that identify users by the information the users registered about their physique just like their face, one that provides individually customized service to users after identifying them, and one which provides minimal information and service for unauthenticated users.
Kim, Dae-Gyu;Kim, Hye-Yun;Kim, Giyeon;Jang, Phil-Sik;Jung, Woo Hyun;Hyun, Joo-Seok
Science of Emotion and Sensibility
/
v.19
no.1
/
pp.95-110
/
2016
Uncanny valley refers to the condition where the affinity of a human-like object decreases dramatically if the object becomes extremely similar to human, and has been hypothesized to derive from the cognitive load of categorical conflict against an uncanny object. According to the hypothesis, the present study ran an oddball task consisting of trials each displaying one among a non-human, human and uncanny face, and measured event-related potentials (ERPs) for each trial condition. In Experiment 1, a non-human face was presented in 80% of the trials (standard) whereas a human face for another 10% trials (target) and an uncanny face for the remaining 10% trials (uncanny). Participants' responses were relatively inaccurate and delayed in both the target and uncanny oddball trials, but neither P3 nor N170 component differed across the three trial conditions. Experiment 2 used 3-D rendered realistic faces to increase the degree of categorical conflict, and found the behavioral results were similar to Experiment 1. However, the peak amplitude of N170 of the target and uncanny trials were higher than the standard trials while P3 mean amplitudes for both the target and uncanny trials were comparable but higher than the amplitude for the standard trials. P3 latencies were delayed in the order of the standard, target, and uncanny trials. The changes in N170 and P3 patterns across the experiments appear to arise from the categorical conflict that the uncanny face must be categorized as a non-target according to the oddball-task requirement despite its perceived category of a human face. The observed increase of cognitive load following the added reality to the uncanny face also indicates that the cognitive load, supposedly responsible for the uncanny experience, would depend on the increase of categorical conflict information subsequent to added stimulus complexity.
Fear of contact exists due to the prevention of the spread of infectious diseases such as COVID-19. When using the common entrance door of an apartment, access is possible only if the resident enters a password or obtains the resident's permission. There is the inconvenience of having to manually enter the number and password for the common entrance door to enter. Also, contactless entry is required due to COVID-19. Due to the development of ICT, users can be easily identified through the development of face recognition and voice recognition technology. The proposed method detects a visitor's face through a CCTV or camera attached to the common entrance door, recognizes the face, and identifies it as a registered resident. Then, based on the registered information of the resident, it is possible to operate without contact by interworking with the elevator on the server. In particular, if face recognition fails with a hat or mask, the visitor is identified by voice or additional authentication of the visitor is performed based on the voice message. It is possible to block the spread of contagiousness without leaving any contactless function and fingerprint information when entering and exiting the front door of an apartment house, and without the inconvenience of access.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.