• Title/Summary/Keyword: 어휘의 수준

Search Result 152, Processing Time 0.026 seconds

A PILOT STUDY FOR STANDARDIZATION OF BERKELEY PUPPET INTERVIEW - SYMPTOMATOLOGY & PARENT-CHILD RELATIONSHIP SCALE (Berkeley Puppet Interview의 표준화를 위한 예비 연구 - 증상 척도와 부모-자녀 관계척도)

  • Shin, Min-Sup;Son, Jung-Woo;Cho, Soo-Churl;Kim, Boong-Nyun;Kim, Soo-Kyoung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • Objectives:BPI was developed for assessing young children's perceptions. Using an interactive techniques for interviewing children, the BPI blends structured and clinical interviewing technique. Present study was to evaluate the reliability, validity and the clinical utility of Berkeley Puppet Interview(BPI) for young children aged 4 to 7. Methods:Subjects consisted of 37 children(boy20, girl 17) between the age of 4 and 7 who visited the child-psychiatry outpatient division of children's hospital in Seoul and Chungju. The measures used in this study BPI-S(symptomatology) and BPI-PC(parent-child relationship). BPI was translated into Korean by three clinical psychologists. To examine the reliability, Chonbach's alpha were calculated and to examine the validity, correlation coefficients were calculated on BPI-S & K-CBCL. Results:BPI-PC's Cronbach's alpha was 0.86 and BPI-S's Cronbach's alpha was 0.74. Correlation between the internalizing scale of BPI-S and that of K-CBCL was 0.477 and correlation between the internalizing scale of BPI-S and the externalizing scale of K-CBCL was -0.431, suggesting the validity of BPI-S. Conclusion:These results show that BPI-S & BPI-PC may be useful tool for young children's diagnostic interview.

  • PDF

A Study the effect of Cooking Activity as a Language Intervention on the Language Development of Language Delayed Infants. (요리활동을 통한 언어중재가 언어발달지연을 보이는 유아의 언어능력 향상에 대한 연구)

  • Seo, Eui-Jung;Kim, Yun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.109-118
    • /
    • 2016
  • Language intervention through cooking activity programs is designed to provide an efficient teaching method and improved educational environment in the field of teaching. This program addresses the effects of this program on the language development of three three-year-old infants (M;2, F;1) in the Center in Seoul. A cooking topic suitable for the age of this group was selected. The language Intervention was conducted for 50 minutes per week for a total of 25 times, and made use of vocabulary, verbs and nouns related to cooking which were evenly distributed. In this study, the Peabody Picture Vocabulary Test-Revised (PPVT-R), receptive language age (RLA) and expressive language age (ELA), and Preschool Receptive-Expressive Language Scale (PRES) were used to analyze the collected data. After the study, the cooking activity was accomplished with normal development outcomes appearing in the ability of vocabulary, receptive language, expressive language, and integrated language. There is now a solid evidence base supporting the efficacy of cooking activity in producing positive outcomes in the language development of language delayed infants. Consequently, cooking can induce their active participation and interest and extend their language abilities through various experiences.

Evaluation of the Subjective Acoustic Performance of University Small Hall Remodeled as a Lecture Room : Based on the case of the W University (강의전용 공간으로 리모델링된 대학 소공연장의 주관적 음향성능 평가 : W대학의 사례를 바탕으로)

  • Kim, Min-Ju;Kim, Jae-Soo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.4
    • /
    • pp.40-49
    • /
    • 2020
  • Recently, the form of education has changed from one-way to two-way and mutual exchange rather than the existing one-way order form, and accordingly, it is necessary to consider creating a suitable learning environment for each type of education. The basic form of education consists of the delivery of knowledge, that is, the delivery of knowledge by teachers to education consumers through voice delivery, so the sound environment is considered an essential factor in creating a pleasant learning environment. The indoor sound environment is very closely related to the mental stress of the inmate, so the quality level of education will also change greatly depending on whether or not the appropriate sound environment is created. However, the importance of the sound environment in educational facilities such as classrooms has not been highlighted due to the lack of research and related laws on the sound environment. Therefore, in this study, auditory tests were conducted using the auralization based on the physical acoustic performance data presented in the preceding study. Through this, we wanted to verify the validity of this research by analyzing the subjective acoustic performance satisfaction of the occupants due to the improvement of the physical acoustic performance. Based on these research results, it is estimated that the improvement of the sound environment of educational facilities through remodeling in the future will be possible to verify whether the sound environment suitable for educational facilities is created only after the analysis stage on the improvement of subjective sound performance as well as physical sound performance.

Sentiment Analysis using Robust Parallel Tri-LSTM Sentence Embedding in Out-of-Vocabulary Word (Out-of-Vocabulary 단어에 강건한 병렬 Tri-LSTM 문장 임베딩을 이용한 감정분석)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The exiting word embedding methodology such as word2vec represents words, which only occur in the raw training corpus, as a fixed-length vector into a continuous vector space, so when mapping the words incorporated in the raw training corpus into a fixed-length vector in morphologically rich language, out-of-vocabulary (OOV) problem often happens. Even for sentence embedding, when representing the meaning of a sentence as a fixed-length vector by synthesizing word vectors constituting a sentence, OOV words make it challenging to meaningfully represent a sentence into a fixed-length vector. In particular, since the agglutinative language, the Korean has a morphological characteristic to integrate lexical morpheme and grammatical morpheme, handling OOV words is an important factor in improving performance. In this paper, we propose parallel Tri-LSTM sentence embedding that is robust to the OOV problem by extending utilizing the morphological information of words into sentence-level. As a result of the sentiment analysis task with corpus in Korean, we empirically found that the character unit is better than the morpheme unit as an embedding unit for Korean sentence embedding. We achieved 86.17% accuracy on the sentiment analysis task with the parallel bidirectional Tri-LSTM sentence encoder.

Comparative Analysis and Implications of Command and Control(C2)-related Information Exchange Models (지휘통제 관련 정보교환모델 비교분석 및 시사점)

  • Kim, Kunyoung;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.59-69
    • /
    • 2022
  • For effective battlefield situation awareness and command resolution, information exchange without seams between systems is essential. However, since each system was developed independently for its own purposes, it is necessary to ensure interoperability between systems in order to effectively exchange information. In the case of our military, semantic interoperability is guaranteed by utilizing the common message format for data exchange. However, simply standardizing the data exchange format cannot sufficiently guarantee interoperability between systems. Currently, the U.S. and NATO are developing and utilizing information exchange models to achieve semantic interoperability further than guaranteeing a data exchange format. The information exchange models are the common vocabulary or reference model,which are used to ensure the exchange of information between systems at the content-meaning level. The information exchange models developed and utilized in the United States initially focused on exchanging information directly related to the battlefield situation, but it has developed into the universal form that can be used by whole government departments and related organizations. On the other hand, NATO focused on strictly expressing the concepts necessary to carry out joint military operations among the countries, and the scope of the models was also limited to the concepts related to command and control. In this paper, the background, purpose, and characteristics of the information exchange models developed and used in the United States and NATO were identified, and comparative analysis was performed. Through this, we intend to present implications when developing a Korean information exchange model in the future.

Data analysis by Integrating statistics and visualization: Visual verification for the prediction model (통계와 시각화를 결합한 데이터 분석: 예측모형 대한 시각화 검증)

  • Mun, Seong Min;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.15 no.6
    • /
    • pp.195-214
    • /
    • 2016
  • Predictive analysis is based on a probabilistic learning algorithm called pattern recognition or machine learning. Therefore, if users want to extract more information from the data, they are required high statistical knowledge. In addition, it is difficult to find out data pattern and characteristics of the data. This study conducted statistical data analyses and visual data analyses to supplement prediction analysis's weakness. Through this study, we could find some implications that haven't been found in the previous studies. First, we could find data pattern when adjust data selection according as splitting criteria for the decision tree method. Second, we could find what type of data included in the final prediction model. We found some implications that haven't been found in the previous studies from the results of statistical and visual analyses. In statistical analysis we found relation among the multivariable and deducted prediction model to predict high box office performance. In visualization analysis we proposed visual analysis method with various interactive functions. Finally through this study we verified final prediction model and suggested analysis method extract variety of information from the data.

Aspects of Korean rhythm realization by second language learners: Focusing on Chinese learners of Korean (제 2언어 학습자의 한국어 리듬 실현양상 -중국인 한국어 학습자를 중심으로-)

  • Youngsook Yune
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.27-35
    • /
    • 2023
  • This study aimed to investigate the effect of Chinese on the production of Korean rhythm. Korean and Chinese are typologically classified into different rhythmic categories; because of this, the phonological properties of Korean and Chinese are similar and different at the same time. As a result, Chinese can exert both positive and negative influences on the realization of Korean rhythm. To investigate the influence of the rhythm of the native language of L2 learners on their target language, we conducted an acoustic analysis using acoustic metrics like of the speech of 5 Korean native speakers and 10 advanced Chinese Korean learners. The analyzed material is a short paragraph of five sentences containing a variety of syllable structures. The results showed that KS and CS rhythms are similar in %V, VarcoV, and nPVI_S. However, CS, unlike KS, showed characteristics closer to those of a stress-timed language in the values of %V and VarcoV. There was also a significant difference in nPVI_V values. These results demonstrate a negative influence of the native language in the realization of Korean rhythm. This can be attributed to the fact that all vowels in Chinese sentence are not pronounced with the same emphasis due to neutral tone. In this sense, this study allowed us to observe influences of L1 on L2 production of rhythm.

The narrative inquiry on Korean Language Learners' Korean proficiency and Academic adjustment in College Life (학문 목적 한국어 학습자의 한국어 능력과 학업 적응에 관한 연구)

  • Cheong Yeun Sook
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.1
    • /
    • pp.57-83
    • /
    • 2024
  • This study aimed to investigate the impact of scores on the Test of Proficiency in Korean (TOPIK) among foreign exchange students on academic adaptation. Recruited students, approved by the Institutional Review Board (IRB), totaled seven, and their interview contents were analyzed using a comprehensive analysis procedure based on pragmatic eclecticism (Lee, Kim, 2014), utilizing six stages. As a result, factors influencing academic adaptation of Korean language learners for academic purposes were categorized into three dimensions: academic, daily life, and psychological-emotional aspects. On the academic front, interviewees pointed out difficulties in adapting to specialized terminology and studying in their majors, as well as experiencing significant challenges with Chinese characters and Sino-Korean words. Next, from a daily life perspective, even participants holding advanced TOPIK scores faced difficulties in adapting to university life, emphasizing the necessity of practical expressions and extensive vocabulary for proper adjustment to Korean life. Lastly, within the psychological-emotional dimension, despite being advanced TOPIK holders, they were found to experience considerable stress in conversations or presentations with Koreans. Their lack of knowledge in social-cultural and everyday life culture also led to linguistic errors and contributed to psychological-emotional difficulties, despite proficiency in Korean. Based on these narratives, the conclusion was reached that in order to promote the academic adaptation of Korean language learners, it is essential to provide opportunities for Korean language learning. With this goal in mind, efforts should be directed towards enhancing learners' academic proficiency in their majors, improving Korean language fluency, and fostering interpersonal relationships within the academic community. Furthermore, the researchers suggested as a solution to implement various extracurricular activities tailored for foreign learners.

Development of a Java Compiler for Verification System of DTV Contents (DTV 콘텐츠 검증 시스템을 위한 Java 컴파일러의 개발)

  • Son, Min-Sung;Park, Jin-Ki;Lee, Yang-Sun
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1487-1490
    • /
    • 2007
  • 디지털 위성방송의 시작과 더불어 본격적인 데이터 방송의 시대가 열렸다. 데이터방송이 시작 되면서 데이터방송용 양방향 콘텐츠에 대한 수요가 급속하게 증가하고 있다. 하지만 양방향 콘텐츠 개발에 필요한 저작 도구 및 검증 시스템은 아주 초보적인 수준에 머물러 있는 것이 현실이다. 그러나 방송의 특성상 콘텐츠 상에서의 오류는 방송 사고에까지 이를 수 있는 심각한 상황이 연출 될 수 있다. 본 연구 팀은 이러한 DTV 콘텐츠 개발 요구에 부응하여, 개발자의 콘텐츠 개발 및 사업자 또는 기관에서의 콘텐츠 검증이 원활이 이루어 질수 있도록 하는 양방향 콘텐츠 검증 시스템을 개발 중이다. 양방향 콘텐츠 검증 시스템은 Java 컴파일러, 디버거, 미들웨어, 가상머신, 그리고 IDE 등으로 구성된다. 본 논문에서 제시한 자바 컴파일러는 양방향 콘텐츠 검증 시스템에서 데이터 방송용 자바 애플리케이션(Xlet)을 컴파일하여 에뮬레이팅 하거나 런타임 상에서 디버깅이 가능하도록 하는 바이너리형태의 class 파일을 생성한다. 이를 위해 Java 컴파일러는 *.java 파일을 입력으로 받아 어휘 분석과 구문 분석 과정을 거친 후 SDT(syntax-directed translation)에 의해 AST(Abstract Syntax Tree)를 생성한다. 클래스링커는 생성된 AST를 탐색하여 동적으로 로딩 되는 파일들을 연결하여 AST를 확장한다. 의미 분석과정에서는 확장된 AST를 입력으로 받아 참조된 명칭의 사용이 타당한지 등을 검사하고 코드 생성이 용이하도록 AST를 변형하고 부가적인 정보를 삽입하여 ST(Semantic Tree)를 생성한다. 코드 생성 단계에서는 ST를 입력으로 받아 이미 정해 놓은 패턴에 맞추어 Bytecode를 출력한다.ovoids에서도 각각의 점들에 대한 선량을 측정하였다. SAS와 SSAS의 직장에 미치는 선량차이는 실제 임상에서의 관심 점들과 가장 가까운 25 mm(R2)와 30 mm(R3)거리에서 각각 8.0% 6.0%였고 SAS와 FWAS의 직장에 미치는 선량차이는 25 mm(R2) 와 30 mm(R3)거리에서 각각 25.0% 23.0%로 나타났다. SAS와 SSAS의 방광에 미치는 선량차이는 20 m(Bl)와 30 mm(B2)거리에서 각각 8.0% 3.0%였고 SAS와 FWAS의 방광에 미치는 선량차이는 20 mm(Bl)와 30 mm(B2)거리에서 각각 23.0%, 17.0%로 나타났다. SAS를 SSAS나 FWAS로 대체하였을 때 직장에 미치는 선량은 SSAS는 최대 8.0 %, FWAS는 최대 26.0 %까지 감소되고 방광에 미치는 선량은 SSAS는 최대 8.0 % FWAS는 최대 23.0%까지 감소됨을 알 수 있었고 FWAS가 SSAS 보다 차폐효과가 더 좋은 것으로 나타났으며 이 두 종류의 shielded applicator set는 부인암의 근접치료시 직장과 방광으로 가는 선량을 감소시켜 환자치료의 최적화를 이룰 수 있을 것으로 생각된다.)한 항균(抗菌) 효과(效果)를 나타내었다. 이상(以上)의 결과(結果)로 보아 선방활명음(仙方活命飮)의 항균(抗菌) 효능(效能)은 군약(君藥)인 대황(大黃)의 성분(成分) 중(中)의 하나인 stilbene 계열(系列)의 화합물(化合物)인 Rhapontigenin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.