• Title/Summary/Keyword: 양자게이트

Search Result 67, Processing Time 0.027 seconds

Trends in Toffoli gate decomposition (Toffoli gate 분해에 대한 동향)

  • Hyun-Jun Kim;Se-Jin Lim;Hwa-Jeong Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.165-167
    • /
    • 2023
  • 양자 컴퓨터는 기존의 클래식 컴퓨터와 달리 양자역학 원리를 활용해 정보 처리를 수행하며, 특정 문제들을 훨씬 빠르게 해결할 수 있다. 양자 컴퓨터는 큐빗을 기본 단위로 사용하고, 아다마르 게이트, CNOT 게이트, 파울리 게이트, 토플리 게이트 등을 조합하여 양자 회로를 구성한다. Toffoli 게이트는 유니버설 게이트 중 하나로, 세 개의 큐빗을 입력받아 조건부 (Controlled-Controlled) NOT 연산을 수행한다. 이 게이트는 복잡한 작업을 기본 양자 게이트로 분해할 수 있어, 회로의 게이트 수, 깊이 및 오류율 측면에서 최적화할 수 있다. 기본 양자 게이트 중 T 게이트는 노이즈와 오류에 영향을 받을 수 있으므로, T 게이트의 수와 깊이를 최적화하는 것이 중요하다. 본 논문은 Toffoli 게이트 분해를 통해 양자 회로의 게이트 수와 깊이를 최적화하는 방법을 조사한다.

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Realization of Multiple-Control Toffoli gate based on Mutiple-Valued Quantum Logic (다치양자논리에 의한 다중제어 Toffoli 게이트의 실현)

  • Park, Dong-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • Multiple-control Toffoli(MCT) gates are macro-level multiple-valued gates needing quantum technology dependent primitive gates, and have been used in Galois Field sum-of-product (GFSOP) based synthesis of quantum logic circuit. Reversible logic is very important in quantum computing for low-power circuit design. This paper presents a reversible GF4 multiplier at first, and GF4 multiplier based quaternary MCT gate realization is also proposed. In the comparisons of MCT gate realization, we show the proposed MCT gate can reduce considerably primitive gates and delays in contrast to the composite one of the smaller MCT gates in proportion to the multiple-control input increase.

Quantum Entanglement Transfer in Spin-1/2 Systems (스핀계에서 양자얽힘 이동)

  • Lee, Hyuk-Jae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.84-87
    • /
    • 2006
  • We suggest a procedure entangling two spin-1/2 particles at distant positions such that they cannot be directly entangled via local interaction. An already entangled pair is used to transfer the entanglement to another pair of particles by way of interaction. This scheme of nonlocal generation of entanglement can be used in the construction of a two-qubit universal gate.

Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch (확률진폭 스위치에 의한 양자게이트의 함수 임베딩과 투사측정)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1027-1034
    • /
    • 2017
  • In this paper, we propose a new function embedding method that can measure mathematical projections of probability amplitude, probability, average expectation and matrix elements of stationary-state unit matrix at all control operation points of quantum gates. The function embedding method in this paper is to embed orthogonal normalization condition of probability amplitude for each control operating point into a binary scalar operator by using Dirac symbol and Kronecker delta symbol. Such a function embedding method is a very effective means of controlling the arithmetic power function of a unitary gate in a unitary transformation which expresses a quantum gate function as a tensor product of a single quantum. We present the results of evolutionary operation and projective measurement when we apply the proposed function embedding method to the ternary 2-qutrit cNOT gate and compare it with the existing methods.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

Realizing Mixed-Polarity MCT gates using NCV-|v1 > Library (NCV-|v1 >라이브러리를 이용한 Mixed-Polarity MCT 게이트 실현)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Recently a new class of quantum gate called $NCV-{\mid}v_1$ > library with low cost realizable potentialities is being watched with keen interest. The $NCV-{\mid}v_1$ > MCT gate is composed of AND cascaded-$CV-{\mid}v_1$ > gates to control the target qudit and its adjoint gates to erase junk ones. This paper presents a new symmetrical duality library named $NCV^{\dag}-{\mid}v_1$ > library corresponding to $NCV-{\mid}v_1$ > library. The new $NCV^{\dag}-{\mid}v_1$ > library can be operated on OR logic under certain conditions. By using both the $NCV-{\mid}v_1$ > and $NCV^{\dag}-{\mid}v_1$ > libraries it is possible to realize MPMCT gates, SOP and POS type synthesis of quantum logic circuits with extremely low cost, and expect dual gate property caused by different operational attributes with respect to forward and backward operations.

Research trend on optimization techniques for quantum circuits (양자회로 최적화 기법 및 적용 조사)

  • Gyeong-Ju Song;Min-Woo Lee;Hwa-Jeong Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.29-32
    • /
    • 2023
  • 양자 컴퓨터의 연산 성능이 알려지면서 기존 암호 시스템이 붕괴될 것이라 예상한다. 앞선 많은 연구들은 공격 대상 암호에 대해 양자회로로 구현하고 공격에 필요한 양자자원을 추정하였지만 암호를 공격하기 위해서는 대규모 양자컴퓨터의 동작을 요구한다. 뿐만 아니라 내결함성 양자 컴퓨터에서 유효한 결과를 얻기 위해서는 오류 정정이 필수적이며 오류 정정에도 양자 자원을 소비하며 결과적으로 더 큰 규모의 양자컴퓨터가 필요하고 크기가 커질수록 오류가 증가한다. 이러한 내결함성 대규모 양자회로에서 T 게이트를 구현하는 것이 다른 게이트를 구현하는 것 보다 어렵고 T-depth가 회로의 실행시간에 큰 영향을 미친다. 본 논문에서는 T-depth 최적화 도구 및 T-depth 감소 기법을 적용한 방식을 조사하였다.

A Study on the Information Reversibility of Quantum Logic Circuits (양자 논리회로의 정보 가역성에 대한 고찰)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.189-194
    • /
    • 2017
  • The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.

A New Functional Synthesis Method for Macro Quantum Circuits Realized in Affine-Controlled NCV-Gates (의사-제어된 NCV 게이트로 실현된 매크로 양자회로의 새로운 함수 합성법)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.447-454
    • /
    • 2014
  • Recently most of functional synthesis methods for quantum circuit realization have a tendency to adopt the declarative functional expression more suitable for computer algorithms, so it's difficult to analysis synthesized quantum functions. This paper presents a new functional representation of quantum circuits compatible with simple architecture and intuitive thinking. The proposal of this paper is a new functional synthesis development by using the control functions as the power of corresponding to affine-controlled quantum gates based on the mathematical substitution of serial-product matrix operation over the target line for the arithmetic and modulo-2 ones between power functions of unitary operators. The functional synthesis algorithm proposed in this paper is useful for the functional expressions and synthesis using both of reversible and irreversible affine-controlled NCV-quantum gates.