• Title/Summary/Keyword: 양생 온도

Search Result 356, Processing Time 0.024 seconds

Influence of Bubble Sheet Applying Methods on Temperature of Exposed Joint Rebar at Wall Surface of Load-Bearing Wall Structure Building During Winter (동절기 벽식구조 건축물 벽부분의 버블시트 포설방법 변화가 이음부 노출철근의 온도에 미치는 영향)

  • Han, Cheon-Goo;Lee, Jea-Hyeon;Kim, Min-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • In this research, the surface covered curing method using the double-layered bubble sheet was evaluated. This double-layered bubble sheet has outstanding insulating performance with its low heat conductivity and high economic feasibility with its high durability. However, in the case of wall-typed building construction, the area of exposed rebar is curious on curing performance with the double-layered bubble sheet in spite of the double-layered bubble sheet showed favorable performance for slab. Therefore, in this research, regarding the actually constructed wall-typed apartment building, the most efficient curing method was suggested based on the evaluation of curing performance depending on temperature distribution depending on various location of covered or exposed rebar. As a result, the D method was determined as the most efficient curing method without any concern of early-age frost damage. However, by considering easiness of construction, the B method of covering the pieced double-layered bubble sheet on gap between rebars can be another option of desired result.

Analysis of Temperature Rise History Considering Construction Environments in Mass Concrete Structural Element (매스콘크리트 구조체의 주변환경을 고려한 온도이력 해석)

  • 이장화;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.191-199
    • /
    • 1996
  • Cracks occur in mass concrete structures during construction if temperature of the concrete due to heat of hydration is suddenly changed. The temperature is also changed after placement of mass concrete by construction environments on structures. However, methods which can analyze the temperature history of mass concrete considering the construction environments have not been developed yet. In this research, an algorithm and finite element analysis program is developed for the analysis of temperature rise history of mass concrete considering quantitatively heat transfer coefficient and construction environmental conditions such as climate conditions, curing conditions, forms and form removal, and additive curing. By comparing analysis results of the program with experimental data, other research data, and analysis results by a finite element program ADINAT, validity and accuracy of the program is verified.

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.

Strength Properties of Mortar Mixed with Accelerator for Freeze Protection in Constant and Variable Temperature Condition (정온 및 변온조건하에서 내한촉진제를 혼합한 모르터의 강도특성)

  • Kim, Young-Jin;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.942-948
    • /
    • 2002
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and the strength development may be delayed. One of the solution methods to resolve these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerator for freeze protection. In this study we Investigate the effect on the strength development of cement mortar using accelerator for freeze protection with the variable curing condition. As the result of this study, the mortar using accelerator for freeze protection show continuously the strength development in curing condition of -5$^{\circ}C$. And the compressive strength under variable temperature condition was higher than constant temperature condition in same maturity.

A Study on the Strength Properties of High-Strength concrete under Various curing conditions (각종 양생방법에 따른 고강도 콘크리트의 강도발현 특성에 관한 연구)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.965-968
    • /
    • 2008
  • The KS F 2403 method used on domestic sites for checking the compressive strength of a structure, sets the compressive strength of the concrete used in structural specimens as the compressive strength of testing specimens. Under this regulation, the curing method used for testing the specimens must be the standard ponding curing method (20$\pm$2$^{\circ}$C). However, because in-placed concrete is exposed to open air and cured under the seasonal temperature changes, the compressive strength of a real structure is different from the tested compressive strength. (Therefore,) This thesis first identifies the distinct characteristics of the strength development by applying the curing method listed under the KS and used for testing specimens on compressive strength tests; the atmospheric curing method, the sealed curing method, and the structural specimen core strength testing methods used for the in-sites quality checks including reckoning of the compressive strength of the structural specimens and form-demolding period; and the curing method suggested in this research, which sets the internal conditions of the structural specimens as the conditions of the applied curing method. Then, the thesis suggests the specimen curing method that most closely reenacts the compressive strength of the concrete used on the structural specimens

  • PDF

A Study on Properties of Early Strength Development of the Concrete (콘크리트의 조기강도 발현특성에 관한 연구)

  • Kang, Chang-Woon;Lee, Jae-Sam;Kim, Jung-Sik;Sung, Yong-Hwan;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, due to the increase of high-rise buildings construction, many researches for making harden of concrete earlier and remove of forms faster are being performed to reduce construction period. The purpose of this study is to analysis which mixing condition and curing temperature of early strength concrete. Porperties of concrete by the different factors, such as the type of active admixtures, mineral admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. The concrete Strength remarkably will be able to confirm that decreases from temperature below 12$^{\circ}C$.

  • PDF

Development of Temperature-Aanalysis Program for Mass Concrete Using Finite Element Method (유한요소법에 의한 매스콘크리트 구조물의 온도해석 프로그램 개발)

  • 김은겸;김래현;신치범
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.167-175
    • /
    • 1995
  • A temperature-analysis program, named ${\ulcorner}TAMCON{\lrcorner}$, was developed to predict the temperature rise due to the heat of hydration in hardening concrete. Finite element method was employed to facilitate the temperature analysis for the structures with complex geometry and various boundary conditions. In order to test the validity of the program, the results obtained from TAMCON for the wall-t.ype structure and the mat foundation were compared with the numerical analysis anti experimental data reported previously. As a result, it was found that they were in good agreement. TAMCON may be useful for the temperature control to restrain thermal cracking and the construction management to design the reasonable curing method in mass concrete.

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures (광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성)

  • Moon Han-Young;Kim Byoung-Kwon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.407-414
    • /
    • 2004
  • The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

Effects of the Curing Temperature on the Strength of Mortar added Admixtures (양생온도(養生溫度)가 혼화재(混和材)를 사용(使用)한 Mortar의 강도(强度)에 미치는 영향(影響))

  • Kang, Sin-Up;Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.214-224
    • /
    • 1976
  • This research was attempted as one of studies on the strength of mortar added admixtures at different curing temperatures. Variations of curing temperature to. test compressive strength, tensil strength and bending strength were $20^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$ and these results were summarized as follow : In strength of mortar added briquette ash, the compressive strength was increased: 1.58 percent, the tensile strength 0.96 percent, and the bending strength 1.26 percent compared with standard strength, by increasing one degree of celsius temperature. Also in strength of mortar added fly ash, the compressive strength increased on the average 1.3 percent, the tensile strength 0.99 percent, and the bending strength 1.18 percent at the above conditions. In case of using fly ash as admixture, maximum compressive strengths was attained at the level of 25 percent of fly ash, maximum tensile strength at the level of 20 percent of fly ash, and maximum bending strength at the level of 20 percent of fly ash. In case of using briquette ash, maximum compressive strength was attained maximum strength at 20 percent of the admixture, maximum tensile strength at the level of 15 to 20 percent of admixture and maximum bending strength at the level of 20 percent of admixture. Although addition of briquette ash was less effective in increasing the strength compared with the addition of fly ash, briquette ash might be used as one of admixtures because the control of curing temperature might affect in getting the required practical strength.

  • PDF