• Title/Summary/Keyword: 양단지지

Search Result 68, Processing Time 0.03 seconds

The Effect of Neglecting The Longitudinal Moment Terms on The Deflection of Laminated Plates with a Pair of Opposite Edges Simple Supported and The Other Pair of Opposite Edges Free (양단단순-타단자유 지지된 적층복합판의 처짐에 대한 종방향 모멘트 무시효과)

  • 김덕현;원치문;심도식;이원석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.77-83
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of B$_{16}$, B$_{26}$, D$_{26}$, and D$_{26}$ stiffnesses as the ply number increases. Such plates above behave as special orthotropic plates and simple formulas developed by the senior author[1, 3] can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms(M$_{x}$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.ted.d.

  • PDF

Vibration Analysis of the Continuous Circular Cylindrical Shell with the Clamped-clamped Supports at Two End Edges (양단이 고정지지된 연속원통셸의 진동특성 해석)

  • 한창환;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2002
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell and so on. In this paper, a method for the vibrational analysis of the continuous circular cylindrical shells with the clamped-clamped supports at two end edges is developed by using the modal expansion method. Forces and/or moments acting on the shell surface are expressed in terms of the Dirac Delta Function. Frequency equation of the continuous shell is also derided by the application of the equilibrium of forces and the continuity of displacements at the boundary. Natural frequencies of the continuous shell are calculated numerically with mathematica 3.0 and they are compared with FEM results from the ANSYS 5.3 to improve the reliability of analytic solutions. Mode shares obtained by the FEM are Presented in this paper.

Buckling Analysis of Thin-Walled Curved Members by Finite Element Method (유한요소법에 의한 박판곡선부채의 좌굴해석)

  • Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.1-14
    • /
    • 1991
  • A computer program for the linear elastic buckling anlalysis of thin walled members is developed using a 3-node triangular shell element. The element has real stiffness value for a kinematic degree of freedom associated with rotation about the surface normal at each node. The validity of the present computer program is demonstrated through the plate buckling analysis and the lateral-torsional buckling analysis of a straight beam. Then, simply supported circular arches subjected to uniform bending are analyzed and the results are compared with existing solutions.

  • PDF

Free Vibration of Orthotropic Laminated Composite Conical Shells (직교이방성 적층 복합재료 원추셸의 자유진동)

  • 이영신;강인식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.595-603
    • /
    • 1989
  • Free vibration of orthotropic laminated composite conical shells with constant thickness are considered. Governing frequency equations are derived based on the Flugge theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others for the isotropic conical shells and numerical results are obtained based on these results for the specially orthotropic laminated composite conical shells with simply supported edges. Variations of frequency parameter on the change of material properties, stacking sequences, stacking number, geometrical parameters and orthotropic parameters are considered in the analysis.

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Nonlinear Dynamic Characteristics of Antisymmetric Laminated Shells (역대칭 적층쉘의 비선형 동적 특성에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.691-700
    • /
    • 1998
  • Based on Von Karman-Donnell kinematic assumptions for laminated shells, the nonlinear vibration behaviour of antisymmetrically or asymmetrically laminated cross-ply circular cylindrical shells with clamped and simply-supported ends are studied by a multi-mode approach. A equation is formulated and satisfies the associated compatibility equation and all boundary conditions. The displacement function is assumed to take the form of the lowest linear vibration mode and to satisfy continuity of the circumferential displacement. The nonlinear vibration equation is derived by the Galerkin's method. And nonlinear frequency is obtained by using the harmonic balance method as a function of lamination parameters, material constants, aspect ratio and amplitude of vibration. The effect of initial imperfection is also included. Results of the non-linear vibration are presented for different amplitudes of initial imperfection and four sets of boundary conditions. Present results are compared well with existing analysis results.

  • PDF

Development of beam-spring model to analyse the stability of double-deck tunnel (복층터널 안정성 분석을 위한 빔-스프링 모델 개발)

  • Lee, Sang-Hyun;An, Joon-Sang;Kang, Kyung-Nam;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.301-317
    • /
    • 2017
  • In this study, as an initial study for development of stability analysis program of a double-deck tunnel during life cycle, a structural analysis solver based beam-spring model for the double-deck tunnel is constructed. Effect of parameters(slab supporting type, depth of the tunnel and ground elastic modulus) is analyzed with the beam-spring model. The model is also compared and verified by commercial structural analysis program. It is considered that the slab supporting type affects the integrated behavior with segment lining and influence of intermediate slab on the stability of the tunnel decreases as the tunnel depth increases. The relationship between the ground elastic modulus and the effect of the intermediate slab on the segment lining needs further investigation.

Design Equation for Square CFT Columns with Large Width-to-Thickness Ratio (폭두께비가 큰 각형CFT 단주의 설계식)

  • Kim, Sun Hee;Choi, Young Whan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.537-544
    • /
    • 2009
  • The design standards, such as AISC-LRFD (2005) and KBC-2005, specify the maximum width-to-thickness ratio that can be used for computing the strength of the concrete-filled tube (CFT), and do not include any formula for computing the strength when the width-to-thickness ratio is over the limit. This paper proposes a strength equation for CFTs with a large width-to-thickness ratio by acknowledging the fact that the stiffened slender steel platehas substantial postbuckling strength, and that it therefore can be more economical to use it. The equation adopts the concept of effective width,which is very useful for plate analysis. By comparing the strengths of AISC2005, KBC2005, and the proposed method with the results of the experiment, where the width-to-thickness ratio was regarded as the main parameter, the applicability of the proposed method was verified.

Free Vibrations and Buckling Loads of Beam-Columns on Winkler-Type Foundations (Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석)

  • Jeong, Jin Seob;Lee, Byoung Koo;Oh, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • The main purpose of this paper is to present both the natural frequencies and the buckling loads of beam-columns on Winkler-type foundations. The ordinary differential equations governing the free vibrations and the buckling loads of beam-columns on Winkler-type foundation are derived as nondimensional forms. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equations and to determine the eigenvalues(natural frequencies and buckling loads), respectively. Hinged-hinged and damped-clamped end constraints are applied in numerical examples. The relation between frequency parameter and elastic foundation parameter is presented in figure. The effects of axial loads on the natural frequencies of beam-columns on elastic foundations are investigated and the relation between buckling load parameter and elastic foundation parameter is also analyzed. The relation between foundation rested ratio and frequency parameter, buckling load parameter are investigated. The beam-columns on non-homogeneous elastic foundation are analyzed and typical mode shapes are also presented.

  • PDF

Seismic Response of the Arch Structure with Column (하부기둥을 갖는 아치 구조물의 지진응답에 관한 연구)

  • Kang, Joo-Won;Lee, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2010
  • Spatial structures have the different dynamic characteristics from general rahmen structures and many studies on dynamic behavior of it is conducted. But most studies was conducted about the particular shape of spatial structures and, directly, the usable results of studies are very limited for seismic design of spatial structures with the lower structure. So, this study is conducted about the truss arch structure that the basic dynamic characteristics of spatial structure is inherent in, and the change of its seismic response is analyzed when columns have different length on both ends of it. According to the difference of column's length on both ends, the vertical acceleration response of truss arch structure is affected more than the horizontal acceleration response of it. Therefore, when the stiffness of lower structures that support the upper structure is different, the consideration of the vertical response is significantly required for the seismic design of spatial structures.

  • PDF