• Title/Summary/Keyword: 앞먹임 보상제어

Search Result 7, Processing Time 0.016 seconds

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연 피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used based on the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.

A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control (2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별)

  • Yeo, Sung Min;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

Precise Position Control of Piezoelectric Actuators without Nonlinear Hysteresis Model (비선형 히스테레시스 모델을 채용하지 않는 압전구동기의 정밀위치제어)

  • 송재욱;송하성;김호상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.189-193
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its open loop positioning capability. Generally, a nonlinear hysteresis model is used in feedforward loop to improve positioning accuracy. In this study, however, a simple lead compensator is proposed as a substitution for a complex nonlinear hysteresis model and tested through experiments for precision position control.

  • PDF

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Experiments (MFXLMS 알고리즘을 이용한 전자기베어링계의 외란보상 제어기 - 실험)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • This paper illustrates the feasibility and the effectiveness of the disturbance feedforward compensation control proposed in the previous paper. The compensator is designed experimentally by means of the Multiple Filtered-x Least Mean Square algorithm. A 2-DOF active magnetic bearing system subject to base motion is built and the compensation control is applied. The experimental results demonstrate that the compensation control reduces the air-gap responses within 10$%$ of those by the feedback control alone without increasing the control inputs.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Theory (MFXLMS 알고리즘을 이용한 전자기배어링계의 외란 보상 제어기 - 이론)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • In this paper, a disturbance feedforward compensator design technique is proposed for an active magnetic bearing system subject to base motion for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feedforward compensator design based on adaptive estimation by means of the Multiple Filtered-x least mean square(MFXLMS) algorithm is proposed. The performance and the effectiveness of the proposed technique will be presented in the succeeding paper in which the proposed technique is applied to a 2-DOF active magnetic bearing system subject to base motion.

A Study on Improvement of PWR Steam Generator Water Level Control at Low Power Operation (저출력시 원전 증기발생기 수위제어 개선 연구)

  • Yun, Jae-Hee;Han, Jai-Bok;Joon Lyou
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.420-424
    • /
    • 1994
  • This paper presents an improved water level control scheme for Pressurized Water Reactor(PWR) Steam Generator(S/G) at the low power operation and transient states. To reduce fluctuations of the water level by the swell and shrink phenomena, the scheme adds feedforward terms considering S/G pressure and the feedwater temperature into the conventional proportional-integral feedback controller. The simulation results using the Compact Nuclear Simulator show that smaller level errors and much faster settling time than those of the conventional scheme can be obtained. The proposed algorithm is easily implementable and has a potential for the real applications.

  • PDF

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.