• Title/Summary/Keyword: 압축강도수준

Search Result 327, Processing Time 0.026 seconds

The Fundamental Study on Quality Properties of Binary Blended Concrete according to Water Reducing Performance of Chemical Admixture and Estimation Equation of Compressive Strength (화학 혼화제의 감수 성능에 따른 2성분계 콘크리트의 품질특성 및 압축강도 추정식에 관한 기초적 연구)

  • Kim, Kyung-Hwan;Oh, Sung-Rok;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • In this study, binary blended concrete mix with fly ash and ground granulated blast furnace slag was prepared according to 3 level of water reduction performance of chemical admixture (0%, 8% and 16%) and 3 level of water-cement ratio (40%, 45% and 50%) for evaluation of quality properties of binary blended concrete according to performance of chemical admixture. concrete mix was carried out repetition test of three times in order to secure the reliability. As a result, compressive strength according to performance of chemical admixture was found that difference of strength was about 20% occurred, chemical admixture was showed that a great influence on qualities of concrete. In addition, reflected the effect of performance of chemiacal admixture, prediction model equations for concrete compressive strength was proposed, it was found that more than 85% of the high correlation.

Shear Strength and Deformation Characteristics of Lightweight Soils Mixed with Tire Powder (타이어 가루를 섞은 경량혼합토의 전단강도와 변형특성)

  • Yoon, Gil Lim;Yoon, Yeo Won;Ahn, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.259-265
    • /
    • 2012
  • This paper investigates engineering characteristics of lightweight soils mixed with air foam and tire powder. Lightweight soils could be used as foundation materials, back-fills of reducing vibrating or abutment, and so on. Unconfined and triaxial compression tests were carried out to analyze strength and deformation characteristics of lightweight soils by changing target moist unit weight and cement contents. In comparison with strength characteristics of two different kinds of lightweight soils with same most unit weights ($13kN/m^3$), unconfined compression tests showed similar compressive strength, however, triaxial compression tests showed that compressive strength of lightweight soils mixed with waste tire powder was relatively larger strength than that of lightweight soils mixed with air foam because of elasticity of waste tire powder. Also, unconfined and triaxial compressive strengths of most of lightweight soils increase with increases of moist unit weight and cement contents. However, the strength of lightweight soils mixed with air foam under $11kN/m^3$, when moist unit weight exceeds a certain cement contents, decreases even though cement contents increase because of the effect in a void gap of air foam.

A Study on the Basic and Compression Characteristics of Lightweight Waste for Use as Fill Materials (성토재 적용을 위한 경량폐기물의 기본물성 및 압축특성 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Koh, Tae-Hoon;Lee, Su-Hyung;Shin, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.61-74
    • /
    • 2011
  • This is a fundamental research on use as fill material of lightweight waste such as bottom ash and tire shred. We carried out the test for particle size distribution, specific gravity, density, shear strength, permeability and vertical compression settlement, considering water content change and temperature effect of several waste materials. Bottom ash, which is lighter than soils, has similar permeability and particle size distribution to those of weathered soils. But permeability may differ depending on the particle size distribution. The shear strength aspect of bottom ash and tire shred mixed materials are similar to that of natural fill materials. In the 1-D vertical compression settlement test, we could be assured that bottom ash and tire shred mixed materials showed similar compression settlement to that of sand under actual vertical stress. Furthermore, materials including bottom ash showed smaller compression settlement than that of weathered soils in the long-term settlement test under wetting and freezing-thawing condition.

Characteristics of Compressive Strength and Drying-shrinkage Equation of Alkali-activated Mortar (알칼리 활성화 결합재 모르타르의 압축강도 특성 및 건조수축 추정식에 관한 연구)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • The purpose of this study is to understand a compressive strength and propose a dry shrinkage strain equation being able to predict dry shrinkage of alkali-activated materials(AAM) mortar samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS). The main parameters investigated were the GGBFS replace ratios(30, 50, 70 and 100%) and sodium silicate modules(Ms[$SiO_2/Na_2O$] 1.0, 1.5 and 2.0). The compressive strength of AAM increased with increases GGBFS replace ratios or Ms contents. The dry shrinkage strain of AAM decreased with increases Ms contents. But, the dry shrinkage strain of AAM increased as the GGBFS replace ratio increases. Therefore, the GGBFS replace ratio seems to have very significant and important consequences for the mix design of the AAM mortar. The results indicated the R-square of single regression analysis based on each mix properties was the highest value; 0.7539~0.9786(average 0.9359). And the presumption equation of dry shrinkage strain with all variables(GGBFS, Ms and material age) has higher accuracy and its R-square was 0.8020 at initial curing temperature 23 degrees Celsius and 0.8018 at initial curuing temperature 70 degrees Celsius.

Evaluation of Forming Performance of Cold Rolled Steel Pipes & Tubes for Building Structure (건축구조용 냉간성형 강관의 가공성능 평가)

  • Im, Sung Woo;Choi, Kwang;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.33-42
    • /
    • 2004
  • Making use of SN steel in the building structure should be a prerequisite to adopt the design strength of said steel. As a preceding study, the material properties of STKN400B/490B tubes and SPAP235/325 and SPAR295 square pipes manufactured using SN400B/490B plates were evaluated. Compared with the yield and ultimate strengths of SN400B/490B plates, those of STKN400B/490B tubes increase. Nonetheless, the yield and ultimate strengths of STKN400B/490B tubes satisfied the design codes of STKN400B/490B tubes even though the tubes were fabricated via roll bending or press forming. On the other hand, the yield and ultimate strengths at the edges of SPAP235/325 square pipes did not satisfy the design codes based on the values at the sides. The maximum tensile and compressive residual stresses at the SN490B tube were equal to and 40% of the yield strength of the SN490B plate, respectively, In the case of the SPAP325 square pipe, both the maximum tensile and compressive residual stresses were 80% of the yield strength of the SN490B plate. The axial compressive loaded column test results snowed that the buckling strengths were not very different regardless of the mode of fabrication of STKN490B tunes. i.e., through roll bending or press forming. On the other hand, the buckling strength of the SPAP325 square pipe was higher than that of the built-up square pipe.

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

Mechanical Properties of Recycled Aggregate Concrete Containing Fly Ash (순환골재를 이용한 플라이애시 콘크리트의 역학적 특성)

  • Yang, In-Hwan;Jeon, Byeong-Gwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • The mechanical properties such as compressive strength and elastic modulus of recycled aggregate concrete containing fly ash are investigated in this study. The experimental parameters were replacement ratio of recycled coarse aggregate(RCA) and fly ash. Replacement ratio of RCA was 0, 30, 50, and 70% and replacement ratio of fly ash was 0, 15, 30%. The experimental results were extensively discussed about compressive strength and elastic modulus of concrete at ages of 7, 28 and 91 days. Compared with concrete not containing fly ash, the decrease of compressive strength and elastic modulus of concrete containing fly ash with the replacement ratio of 30% was significant. Therefore, the test results represented that the fly ash replacement ratio of less than 30% was favorable in terms of mechanical properties of recycled coarse aggregate concrete.

Characteristics of Diffusion Coefficient of High Performance Concrete using GGBFS for Road Structures by Accelerating Test Method (슬래그 미분말 혼입률에 따른 도로구조물용 고성능 콘크리트의 압축강도 및 촉진 염소이온 확산 특성)

  • Han, Seong-Woo;Kim, Hong-Sam;Lee, Chan-Young;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.885-888
    • /
    • 2008
  • In recent years, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most high-performance concretes have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituents vary depending on local preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. The results from the study will be utilized as the basic data and guideline in making standard mixproportions and the manufacture, construction work and quality control of HPC

  • PDF

Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel (생물학적 판넬용 마그네시아-인산칼륨 복합체의 유동 및 압축강도 특성)

  • Choi, Yung-Wang;Lee, Jae-Heun;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.357-364
    • /
    • 2017
  • In this paper, we investigated the influence of flow and compressive strength on the mixing ratio and water-to-binder (W/B) ratio of magnesia - potassium phosphate composites for controlling the quality of the Magnesia-Potassium Phosphate Composites(Magnesia-Potassium Phosphate Composites, MPPC) as a matrix material for biological panels. MPPC was produced at 7 W/B ratios (30, 35, 40, 45, 50, 55 and 60 vol.%) and 4 P:M ratios (1:0.5, 1:1.0, 1:2.0 and 1:3.0). The experiment results confirmed that the flow and compressive strength of MPPC depend strongly on both P:M and W/B ratios. The flow of MPPC showed that as P: M was increased, the mixing did not occur due to the shortage of the compounding amount for the reaction, because of the large density difference between P and M. The compressive strength of MPPC showed a tendency to decrease with increasing P:Mratio but there was a contradictory result with no proportional change according to W/B ratio. These results indicate that the optimum compounding ratio exists for MPPC according to W/B ratio. These results will be used as the basis data for quality control of the fluidity and compressive strength of matrix materials in terms of material in biological panel design.

Experimental Study on the Applicability of Reactivity SiO2 Nano-Materials as Cement Composites (실리케이트계 반응성 나노소재의 시멘트 혼화재로써 적용 가능성에 대한 실험적 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Baek, Chul-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.529-536
    • /
    • 2021
  • In this study, nano-silica and nano-titanium were selected to determine the possibility of applying the binder to reactive nano materials. The basic characteristics of the nano material candidate group were reviewed. and the reactivity of nano materials was reviewed through K-value. The reactivity of the nano silicate materials was measured to be high. Therefore, as a final candidate group, nano silicate materials were selected. The finally selected reactive nano material was reviewed for its usability as a construction binder. The mechanical properties and unit weight of cement paste were reviewed using silica fume and blast furnace slag and nano materials. When cement composites with nano silicate materials, it was confirmed that it was effective in improving the mechanical performance and decrease the unit weight of cement composites.