Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.7.357

Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel  

Choi, Yung-Wang (Dept. of Civil Engineering, Semyung University)
Lee, Jae-Heun (Dept. of Civil Engineering, Semyung University)
Choi, Byung-Keol (Dept. of Civil Engineering, Semyung University)
Oh, Sung-Rok (Dept. of Civil Engineering, Semyung University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.7, 2017 , pp. 357-364 More about this Journal
Abstract
In this paper, we investigated the influence of flow and compressive strength on the mixing ratio and water-to-binder (W/B) ratio of magnesia - potassium phosphate composites for controlling the quality of the Magnesia-Potassium Phosphate Composites(Magnesia-Potassium Phosphate Composites, MPPC) as a matrix material for biological panels. MPPC was produced at 7 W/B ratios (30, 35, 40, 45, 50, 55 and 60 vol.%) and 4 P:M ratios (1:0.5, 1:1.0, 1:2.0 and 1:3.0). The experiment results confirmed that the flow and compressive strength of MPPC depend strongly on both P:M and W/B ratios. The flow of MPPC showed that as P: M was increased, the mixing did not occur due to the shortage of the compounding amount for the reaction, because of the large density difference between P and M. The compressive strength of MPPC showed a tendency to decrease with increasing P:Mratio but there was a contradictory result with no proportional change according to W/B ratio. These results indicate that the optimum compounding ratio exists for MPPC according to W/B ratio. These results will be used as the basis data for quality control of the fluidity and compressive strength of matrix materials in terms of material in biological panel design.
Keywords
Biological; Compressive Strength; Panel; Magnesia; Workability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. J. Cha, J. H. Lim, "The Effect of Urban Road Vegetation on a Decrease of Road Surface Temperature", Journal of Korean Institute of Landscape Architecture, vol. 39, no. 3, pp. 107-116, 2011. DOI: https://doi.org/10.9715/KILA.2011.39.3.107   DOI
2 S. J. Myung, "The Effect of Green Area in Urban Area on Mitigation of Urban Heat Island", Proceeding of Korean Meteorological Society, no. 2, pp. 402-403, 2015.
3 C. U. Chae, C. H. Suh, "Am Experimental Study on the Lightweight Precast Concrete Panel Development", Proceeding of the Architectural Institute of Korea, vol. 14, no. 1, pp. 521-524, 1994.
4 T. H. Kim, F. Q. Li, T. W. Ahn, I. S. Choi, J. M. Oh, "Research on Improvement of Water Purification Efficiency by Concrete using Bio Film", Journal of Environmental Impact Assessment, vol. 20, no. 6, pp. 815-821, 2011.
5 S. Manso, W. D. Muynck, I. Segura, A. Aguado, K. Steppe, N. Boon, N. D. Belie, "Bioreceptivity Evaluation of Cementitious Materials Designed to Stimulate Biological Growth", Journal of Science of The Total Environment, vol. 481, pp. 232-241, 2014. DOI: https://doi.org/10.1016/j.scitotenv.2014.02.059   DOI
6 J. H. Kim, S. P. Kang, H. N. No, B. C. Lee, "Characteristics and Application of Magnesia Phosphate Ceramic for Construction Materials", Magazine of the Korea Concrete Institute, vol. 27, no. 6, pp. 57-62, 2015.   DOI
7 H. Ma, B. Xu, "Potential to designmagnesium potassiumphosphate cement paste based on an optimal magnesia-to-phosphate ratio", Journal of Materials and Design, vol. 118, pp. 81-88, 2017. DOI: https://doi.org/10.1016/j.matdes.2017.01.012   DOI
8 Korea Concrete Institute, Concrete Standard Specification, Korea Concrete Institute Korea, 2009.
9 S. B. Kim, G. H. Kim, J. H. Cho, "The Urban Heat Island Phenomenon and Potential Mitigation Strategies", Journal of Nakdong River Environmental Research Institute, vol. 6, no. 1, pp. 63-89, 2001.
10 E. H. Park, C. H. Oh, "A study of $CO_2$ reduction effect by preventing heat island", Proceeding of Korean Society of Environment and Ecology, vol. 21, no. 1, pp. 133-141, 2011.
11 Y. J. Kim, D. H. Kang, K. H., Ahn, "Characteristics of Urban Heat-Island Phenomena caused by Climate Changes in Seoul, and Alternative Urban Design Approaches for Their Improvements", Journal of the Urban Design Institute of Korea Urban Design, vol. 12, no. 3, pp. 5-14, 2011.