DOI QR코드

DOI QR Code

실리케이트계 반응성 나노소재의 시멘트 혼화재로써 적용 가능성에 대한 실험적 연구

Experimental Study on the Applicability of Reactivity SiO2 Nano-Materials as Cement Composites

  • 김원우 (한국건설기술연구원 구조연구본부) ;
  • 문재흠 (한국건설기술연구원 구조연구본부) ;
  • 백철우 (유진기업 기술연구소) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공)
  • Kim, Won-Woo (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Moon, Jae-Heum (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Baek, Chul-Woo (R&D Center, EUGENE Corporation) ;
  • Yang, Keun-Hyeok (Department of Architectural Engineering, Kyonggi University)
  • 투고 : 2021.10.27
  • 심사 : 2021.11.14
  • 발행 : 2021.12.30

초록

본 연구에서는 나노소재를 콘크리트용 혼화재로 사용 시 압축강도 증진효과를 실험적으로 분석하였다. 콘크리트용 배합설계를 위해 시멘트 비중 시험(KS L 5110) 방법을 이용하여 5종의 실리케이트계와 1종의 티타늄계 나노소재의 비중을 측정하였다. 그리고 BS EN 196-1의 시멘트 페이스트의 강도측정을 통해 K-value 산정하여 나노소재의 반응성을 검토하였다. 실리케이트계 나노소재 2종의 압축강도 증진효과 분석을 위해 건설용 혼화재 및 활성화재를 함께 사용하여 압축강도를 비교분석하였다. 본 연구에 사용한 실리케이트계 나노소재의 비중은 1.40 - 2.11 수준으로 OPC 대비 비중이 낮게 측정되었으며 나노소재의 반응성은 OPC 대비 7일차에 최대 1.22배, 28일차에 최대 1.12배 높게 분석됐다. 나노소재의 비중이 낮아 나노소재를 사용한 콘크리트의 단위중량은 2.08 - 2.24 수준으로 OPC 배합 2.26과 비교해 상대적으로 낮게 나타났다. 나노소재를 사용한 배합의 압축강도는 재령 28일 기준 81.47-101.34MPa로 건설용 혼화재 및 활성화재를 사용 시 OPC 배합과 비교해서 압축강도가 최대 47.5% 증가했다.

In this study, nano-silica and nano-titanium were selected to determine the possibility of applying the binder to reactive nano materials. The basic characteristics of the nano material candidate group were reviewed. and the reactivity of nano materials was reviewed through K-value. The reactivity of the nano silicate materials was measured to be high. Therefore, as a final candidate group, nano silicate materials were selected. The finally selected reactive nano material was reviewed for its usability as a construction binder. The mechanical properties and unit weight of cement paste were reviewed using silica fume and blast furnace slag and nano materials. When cement composites with nano silicate materials, it was confirmed that it was effective in improving the mechanical performance and decrease the unit weight of cement composites.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 21NANO-B156177-02)으로 수행되었습니다.

참고문헌

  1. ACI 234-R. (2006). Guide for the Use of SIlica Fume in Concrete.
  2. BS EN 196-1. (2016). Methods of Testing Cement Determination of Strength, EUROPEAN STANDARDS.
  3. Chan, L.Y., Andrawes, B. (2010). Finite element analysis of carbon nanotube/cement composite with degraded bond strength, Computational Materials Science, 47(4), 994-100. https://doi.org/10.1016/j.commatsci.2009.11.035
  4. Feynman, R. (1960). There's plenty of room at the bottom(reprint from speech given at annual meeting of the west coast section of the american physical society), Engineering and Science, 23, 22-36.
  5. Heikal, M. (2016). Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles, Journal of Thermal Analysis and Calorimetry, 126(3), 1077-1087. https://doi.org/10.1007/s10973-016-5715-0
  6. Jimenez-Relinque, E., Rodriguez-Garcia, J.R., Castillo, A., Castellote, M. (2015). Characteristics and efficiency of photocatalytic cementitious materials: type of binder, roughness and microstructure, Cement and Concrete Research, 71, 124-131. https://doi.org/10.1016/j.cemconres.2015.02.003
  7. Karapati, S., Giannakopoulou, T., Todorova, N., Boukos, N., Antiohos, S., Papageorgiou, D., Chaniotakis, E., Dimotikali, D., Trapalis, C. (2014). TiO2 functionalization for efficient NOx removal in photoactive cement, Applied Surface Science, 319(15), 29-36. https://doi.org/10.1016/j.apsusc.2014.07.162
  8. Kim, J.H., Kim, W.W., Moon, J.H., Chung, C.W. (2020). Effect of multi-walled carbon nanotube on rheological behavior and compressive strength of cement paste, Journal of the Korean Recycled Construction Resources Institute, 8(4), 467-474. https://doi.org/10.14190/JRCR.2020.8.4.467
  9. KS L 5109. (2017). Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, Korean Standard Association, Korea [in Korean].
  10. KS L 5110. (2016). Testing Method for Specific Gravity of Hydraulic Cement, Korean Standard Association, Korea [in Korean].
  11. Li, G. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research, 34(6), 1043-1049. https://doi.org/10.1016/j.cemconres.2003.11.013
  12. Li, H., Xiao, H.G., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  13. Nili, M., Ehsani, A., Shabani, K. (2010). Influence of Nano-SiO2 and microsilica on concrete performance, Second International Conference on Sustainable Construction Materials and Technologies, 1-5.
  14. Silica Fume Association. (2005). Silica Fume User's Manual, USA.
  15. Whatmore, R.W., Corbett, J. (1995). Nanotechnology in the marketplace, Computing and Control Journal, 6, 105-107.