• Title/Summary/Keyword: 압력회수율

Search Result 105, Processing Time 0.029 seconds

Study on the Process Condition for Producing Propylene Carbonate in Commercial (상업적으로 프로필렌카보네이트를 제조하기 위한 공정 조건 연구)

  • Jin, Sang Hyun;Lee, Hak Beum;Back, Jea Beom
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.58-62
    • /
    • 2020
  • Among the exhaust gas, Carbon dioxide which is a causative factor in greenhouse effect. We study for synthesis of propylene carbonate with carbon dioxide which is captured and utilized in commercially valuable. The Experiment was proceeded as pilot scale with using homogeneous organic catalyst which is able to produce propylene carbonate in commercial and reaction conditions. Optimization condition for concentration of catalyst and reaction temperature, pressure was studied. We confirm that this process is eco-friendly method and commercial application due to the mild condition and also catalyst has a competitive price, reusability.

Studies on the Extraction of Polyacetylene from Korean Ginseng Using Supercritical Carbon Dioxide (초임계 $CO_2$를 이용한 고려인삼으로부터 Polyacetylene 추출에 관한 연구)

  • 유병삼;이호재;고성룡;양덕춘;변상요
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.80-83
    • /
    • 2000
  • Polyacetylenes were extracted from Korean ginseng using supercritical $CO_2$ Yield of extraction of panaxydol and panaxynol was increased as the pressure of supercritical $CO_2$ increased at the range from 200 to 300 bar. The optimal yields of panaxydol and panaxynol was achieved at 65 and $55^{\circ}C$, respectively. Methanol was applied as a modifier. The highest yield of panaxydol and panaxynol were 0.230 and 0.054 mg/g-dry weight at modifier concentration of 10%(w/w), 300 bar, and $65^{\circ}C$. When these results were compared to that of methanol-extraction, the recoveries of panaxydol and panaxynol by supercritical $CO_2$ extraction in SFE were 37.8 and 55.1%, respectively.

  • PDF

Design and Performance Estimation of Heat Regenerator for Small-scale Regenerative Radiant Tube Burner (열처리로용 소형 축열식 복사관 버너의 축열기 설계 기술평가)

  • Cho H. C.;Cho K. W.;Lee Y. K.
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.291-295
    • /
    • 2004
  • Heat regenerator attached in small-scale regenerative radiant tube burner was designed using the theoretical computation code and was confirmed the performance of waste heat recovery ratio. From the computation, when ceramic ball of 4-5kg was used, temperature efficiency and available waste heat recovery ratio were predicted 80% and 70%, respectively. Similar efficiencies were obtained from the experiments using LPG. However, since exhaust gas temperature entered into regenerator was below 850$^{\circ}C$ which was moth lower than that we expected. air preheating temperature was lowered below 800$^{\circ}C$.

막결합형 혐기성 소화에서 무기분리막과 유기분리막의 막오염 특성 비교

  • 강인중;윤성훈;이정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.51-51
    • /
    • 1995
  • 혐기성 미생물의 특징은 성장 속도가 느리고 침강성이 좋지 않다는 점이다. 이 문제의 한 해결책인 막결합형 혐기성 소화는 고액분리를 완전하게 수행함으로써 미생물의 유출을 방지하여 반응조 내부에 미생물을 고농도로 유지할 수 있을 뿐만 아니라 에너지의 회수와 설비 면적의 축소 등 많은 장점이 있다. 이 막결합형 혐기성 소화의 경제성은 사용된 분리막의 투과 속도에 의해 크게 좌우된다. 분리막의 투과 속도에 영향을 미치는 인자로는 미생물 및 유입수를 비롯한 반응조 내부의 상태, 막모듈 압력 온도 막면유속 등의 운전 조건이 있다. 또한 사용되는 분리막 자체의 재질도 투과 유속에 큰 영향을 미친다. 본 연구의 목적은 관형의 지르코니아 스킨층과 탄소 소재 지지층으로 이루어진 복합 재료 분리막과 폴리프로필렌 분리막을 이용하여 막재질에 따른 막오염 특성을 비교 분석하고 효과적인 투과율 회복 방법을 확립하는 것이다.

  • PDF

Estimation of Fugitive Emission Factors of HFC-134a from Scrap Cold Drinking Vending Machine at Use- and Disposal-Phase (음료용 폐자동판매기에서의 HFC-134a 사용 및 폐기단계 탈루배출계수 결정에 대한 연구)

  • Lee, Youngphyo;Kim, Eui-Kun;Kim, Seungdo;Byun, Seokho;Kim, Hyerim;Park, Junho;Lee, Dongwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.350-355
    • /
    • 2013
  • Little information is available for emission pathway even if HFC-134a that is known as one of the major greenhouse gases has been broadly used in Korea. This paper attempts to clarify the emission characteristics of HFC-134a used for refrigerant of cold drinking vending machines (CDVMs) at the use- and disposal-phase. We measured the residual amounts in the scrap CDVMs of 47 by applying commercial recover for refrigerant. The first-order kinetic model was introduced and the emission rate would be proportional to the remaining quantity of refrigerant. The emission factor at the use-phase was determined indirectly to be $6.9{\pm}0.7$ %/yr within a confidence interval of 95%, using information on residual amount and elapsed operation time at the disposal point. Correspondingly, the annual emission rate of HFC-134a per CDVM was determined to be 11.6 g. The average residual rate of HFC-134a in scrap CDVMs was assessed to be $62.5{\pm}2.2%$, leading to a potential emission amount of 144.8 g per scrap CDVM. The chemical compositions of refrigerants from scrap passenger vehicles are quite similar to those of new refrigerants, suggesting that the refrigerants from scrap passenger vehicles could be reused. During the recovering process of refrigerant, the recovered refrigerant was contaminated by compressor lubricant that accounted for about 30% in weight. It is necessary to separate the refrigerant from the recovered material contaminated by lubricant for recycling and reuse the refrigerant.

Thickening of Activated Sludge Using Low Pressure Flotation Pilot System (파일롯 규모의 저압형 부상장치를 이용한 하수슬러지 농축에 관한 연구)

  • Kim, Ji Tae;Oh, Joon Taek;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Low pressure air flotation (LAF) pilot plant for sludge thickening was installed in Chung Nam N.S. municipal waste water treatment plant to verify its application possibility. Effects of operating conditions such as coagulant dosages and microbubble water ratio on thickening of the mixed sludge were examined. Microbubbles which were generated in the chamber of $1.5kgf/cm^2$ by high speed collision method with foaming agent were used to float sludge. Solid loading of $30kg/m^2/hr$, solid contents in thickened sludge of 60,300 mg/L and SS removal efficiency of 99% were obtained through long period operating LAF in conditions of mixed sludge concentration of 14,400 mg/L, coagulant dosage of 27.6 mg/L, foaming agent addition of 4.0 mg/L and microbubble water injection ratio of 9.7%.

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

Analysis of Dynamic Characteristics of Water Injection Pump (물 분사 펌프의 동특성 분석)

  • Lee, Jong Myeong;Lee, Jeong Hoon;Ha, Jeong Min;Ahn, Byung Hyun;Kim, Won Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1483-1487
    • /
    • 2013
  • Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and therefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.