• Title/Summary/Keyword: 암호복호기

Search Result 41, Processing Time 0.02 seconds

A study of a System Call Interface for Supporting File Partial Encryption (파일 부분 암호화 지원을 위한 시스템 호출에 관한 연구)

  • Seo, Hye-in;Seong, Jeong-gi;Kim, Eun-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.549-551
    • /
    • 2017
  • There are currently various file encryption systems and applications for encryption and storage of file on disk. However, the existing file encryption solutions handle encryption and decryption all at once by file or directory. In this study, we propose a system call supporting partial encryption function of the file. The user sets the partial encryption of the file by using system call interface, and writes the contents. And then the data is encrypted and stored on the disk. Also if the user sets the decryption and reads the data, the necessary part of data is decrypted by applying the user setting. According to the user setting, only the necessary part is encrypted and stored on a storage medium. As a result, the information in a secret level can be saved efficiently and securely.

  • PDF

Design and Implementation of ARIA Cryptic Algorithm (ARIA 암호 알고리듬의 하드웨어 설계 및 구현)

  • Park Jinsub;Yun Yeonsang;Kim Young-Dae;Yang Sangwoon;Chang Taejoo;You Younggap
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.29-36
    • /
    • 2005
  • This paper presents the first hardware design of ARIA that KSA(Korea Standards Association) decided as the block encryption standard at Dec. 2004. The ARIA cryptographic algorithm has an efficient involution SPN (Substitution Permutation Network) and is immune to known attacks. The proposed ARIA design based on 1 cycle/round include a dual port ROM to reduce a size of circuit md a high speed round key generator with barrel rotator. ARIA design proposed is implemented with Xilinx VirtexE-1600 FPGA. Throughput is 437 Mbps using 1,491 slices and 16 RAM blocks. To demonstrate the ARIA system operation, we developed a security system cyphering video data of communication though Internet. ARIA addresses applications with high-throughput like data storage and internet security protocol (IPSec and TLS) as well as IC cards.

Optical Security System Using Phase Mask and Interferometer (위상 카드와 간섭계를 이용한 광학적 보안 시스템)

  • Kim, Jong-Yun;Kim, Gi-Jeong;Park, Se-Jun;Kim, Cheol-Su;Bae, Jang-Geun;Kim, Jeong-U;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • In this paper, we propose a new optical security technique using two phase masks based on interferometer. A binary random phase image is used as a reference image and the encrypted image is generated according to the phase difference between the reference image and the original image. If there is no phase difference of a same pixel position in two phase masks, interference intensity of the pixel has minimum value and if phase difference of a same pixel position in two phase masks is $\pi$, its interference intensity has maximum value. We can decrypt the original image by putting two phase masks on each of the two optical paths of the Mach-Zehnder interferometer. Computer simulation and the optical experiments show a good performance of the proposed optical security system.

  • PDF

Area Efficient Implementation of 32-bit Architecture of ARIA Block Cipher Using Light Weight Diffusion Layer (경량화된 확산계층을 이용한 32-비트 구조의 소형 ARIA 연산기 구현)

  • Ryu, Gwon-Ho;Koo, Bon-Seok;Yang, Sang-Woon;Chang, Tae-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.15-24
    • /
    • 2006
  • Recently, the importance of the area efficient implementation of cryptographic algorithm for the portable device is increasing. Previous ARIA(Academy, Research Institute, Agency) implementation styles that usually concentrate upon speed, we not suitable for mobile devices in area and power aspects. Thus in this paper, we present an area efficient AR processor which use 32-bit architecture. Using new implementation technique of diffusion layer, the proposed processor has 11301 gates chip area. For 128-bit master key, the ARIA processor needs 87 clock cycles to generate initial round keys, n8 clock cycles to encrypt, and 256 clock cycles to decrypt a 128-bit block of data. Also the processor supports 192-bit and 256-bit master keys. These performances are 7% in area and 13% in speed improved results from previous cases.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

DPA-Resistant Low-Area Design of AES S-Box Inversion (일차 차분 전력 분석에 안전한 저면적 AES S-Box 역원기 설계)

  • Kim, Hee-Seok;Han, Dong-Guk;Kim, Tae-Hyun;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • In the recent years, power attacks were widely investigated, and so various countermeasures have been proposed, In the case of block ciphers, masking methods that blind the intermediate values in the algorithm computations(encryption, decryption, and key-schedule) are well-known among these countermeasures. But the cost of non-linear part is extremely high in the masking method of block cipher, and so the inversion of S-box is the most significant part in the case of AES. This fact make various countermeasures be proposed for reducing the cost of masking inversion and Zakeri's method using normal bases over the composite field is known to be most efficient algorithm among these masking method. We rearrange the masking inversion operation over the composite field and so can find duplicated multiplications. Because of these duplicated multiplications, our method can reduce about 10.5% gates in comparison with Zakeri's method.

On algorithm for finding primitive polynomials over GF(q) (GF(q)상의 원시다항식 생성에 관한 연구)

  • 최희봉;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.35-42
    • /
    • 2001
  • The primitive polynomial on GF(q) is used in the area of the scrambler, the error correcting code and decode, the random generator and the cipher, etc. The algorithm that generates efficiently the primitive polynomial on GF(q) was proposed by A.D. Porto. The algorithm is a method that generates the sequence of the primitive polynomial by repeating to find another primitive polynomial with a known primitive polynomial. In this paper, we propose the algorithm that is improved in the A.D. Porto algorithm. The running rime of the A.D. Porto a1gorithm is O($\textrm{km}^2$), the running time of the improved algorithm is 0(m(m+k)). Here, k is gcd(k, $q^m$-1). When we find the primitive polynomial with m odor, it is efficient that we use the improved algorithm in the condition k, m>>1.

Implementation of High-radix Modular Exponentiator for RSA using CRT (CRT를 이용한 하이래딕스 RSA 모듈로 멱승 처리기의 구현)

  • 이석용;김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 2000
  • In a methodological approach to improve the processing performance of modulo exponentiation which is the primary arithmetic in RSA crypto algorithm, we present a new RSA hardware architecture based on high-radix modulo multiplication and CRT(Chinese Remainder Theorem). By implementing the modulo multiplier using radix-16 arithmetic, we reduced the number of PE(Processing Element)s by quarter comparing to the binary arithmetic scheme. This leads to having the number of clock cycles and the delay of pipelining flip-flops be reduced by quarter respectively. Because the receiver knows p and q, factors of N, it is possible to apply the CRT to the decryption process. To use CRT, we made two s/2-bit multipliers operating in parallel at decryption, which accomplished 4 times faster performance than when not using the CRT. In encryption phase, the two s/2-bit multipliers can be connected to make a s-bit linear multiplier for the s-bit arithmetic operation. We limited the encryption exponent size up to 17-bit to maintain high speed, We implemented a linear array modulo multiplier by projecting horizontally the DG of Montgomery algorithm. The H/W proposed here performs encryption with 15Mbps bit-rate and decryption with 1.22Mbps, when estimated with reference to Samsung 0.5um CMOS Standard Cell Library, which is the fastest among the publications at present.

Hardware Implementation of Elliptic Curve Scalar Multiplier over GF(2n) with Simple Power Analysis Countermeasure (SPA 대응 기법을 적용한 이진체 위의 타원곡선 스칼라곱셈기의 하드웨어 구현)

  • 김현익;정석원;윤중철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.73-84
    • /
    • 2004
  • This paper suggests a new scalar multiplication algerian to resist SPA which threatens the security of cryptographic primitive on the hardware recently, and discusses how to apply this algerian Our algorithm is better than other SPA countermeasure algorithms aspect to computational efficiency. Since known SPA countermeasure algorithms have dependency of computation. these are difficult to construct parallel architecture efficiently. To solve this problem our algorithm removes dependency and computes a multiplication and a squaring during inversion with parallel architecture in order to minimize loss of performance. We implement hardware logic with VHDL(VHSIC Hardware Description Language) to verify performance. Synthesis tool is Synplify Pro 7.0 and target chip is Xillinx VirtexE XCV2000EFGl156. Total equivalent gate is 60,508 and maximum frequency is 30Mhz. Our scalar multiplier can be applied to digital signature, encryption and decryption, key exchange, etc. It is applied to a embedded-micom it protects SPA and provides efficient computation.

An Efficient Encryption Scheme Combining PRNG and Permutation for Mobile Multimedia Data (모바일 멀티미디어 데이타를 위한, 의사난수생성기와 순열 기법을 결합한 효율적인 암호화 기법)

  • Han, Jung-Kyu;Cho, Yoo-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.581-588
    • /
    • 2007
  • In Digital Right Management, symmetric cipher is used for content encryption to reduce encryption cost, AES, advanced encryption standard is usually used to multimedia encryption under desktop environment because of its reasonable security level and computation cost. But mobile handheld device often uses slow speed processor and operates under battery-powered environment. Therefore it requires low computation cost and low energy consumption. This paper proposes new stream cipher scheme which combines pseudo random number generator(PRNG) and dynamically generated permutations. Proposed scheme activates PRNG and generates original key streams. Then it generates extended key streams by applying permutation to original sequence. These extended key streams are XORed with plaintext and generate ciphertext. Proposed scheme reduces the usage of PRNG. Therefore this scheme is fast and consumes less energy in comparison with normal stream cipher. Especially, this scheme shows great speed up (almost 2 times) than normal stream cipher scheme in random access.