• Title/Summary/Keyword: 알긴산 bead

Search Result 12, Processing Time 0.019 seconds

Preconcentration and Determination of Trace Copper(II) and Lead(II) in Aqueous Solutions by Adsorption on Ca-Alginate Bead (알긴산칼슘 비드 상 흡착에 의한 흔적량 구리(II)와 납(II)의 동시 농축 및 정량)

  • Choi, Jong-Moon;Choi, Sun-Do
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.590-598
    • /
    • 2004
  • The preconcentration and determination of trace Cu(II) and Pb(II) on calcium alginate beads in aqueous solution were studied. A calcium alginate beads were prepared by adding an alginic acid to sample solution contained Ca(II). Some following conditions were optimized: the pH of sample solution, amount of alginic acid, and stirring time for effective adsorption; the type and concentration of acid, and sonication time in an ultrasonic vibrator for the perfect de-sorption. A sample solution was prepared with Cu(II) and Pb(II) in DI water. And Ca(II) and ethanol was added into the sample solution. The pH of the final sample solution was controlled with buffer solution. The alginic acid were dispersed in the sample solution by a magnetic stirrer. This mixture was stored in room temperature for 30 min to form a calcium alginate. After the beads were filtered and washed on a membrane filter, the analytes were redissolved from the beads by an ultrasonic vibration of 10 minutes in 1.0M $HNO_3$ solution. The effect of diverse ions on the adsorption of analytes were studied. This procedure was applied for the analysis of two real samples. The recoveries in spiked samples were $90.4{\sim}104.3%$ for analytes.

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Effect of Dye Wastewater on Heavy Metal Removal using Carboxylated Alginic Acid Bead (Carboxylated alginic acid bead를 이용한 중금속 제거에 대한 염료폐수의 영향 연구)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2009
  • Effect of dye wastewater on heavy metal removal using carboxylated alginic acid bead was performed. When carboxylated alginic acid bead was used as support, effect of dye wastewater on adsorption of $Pb^{2+}$ and $Cu^{2+}$ ions was very small. Also, when $Pb^{2+}$ was coexisted with dye wastewater, adsorption process was almost completed within 2-3 hrs and $Pb^{2+}$ ions (50 ppm) was almost removed with 0.3g of bead. This result means that carboxylated alginic acid bead has effective adsorbent for heavy metal removal in dye wastewater.

  • PDF

Sustained Release of Ibuprofen from Sodium Alginate Beads (알긴산나트륨을 이용한 이부프로펜의 용출지연)

  • Kwon, Sang-Keun;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • Alginic acid is a hydrophilic , colloidal polysaccharide obtained from cell wall of seaweed or brown algae and has a broad range of applications. Alginlc acid becomes alginate gel bead due to its cation-induced gelation. Dried alginate beads can be reswollen according to environmental pH. The purpose of this paper is to explore the possible applicability of alginate beads as an oral controlled release system of ibuprofen. In this experiment ibuprofen was incorporated in alginate beads and alginate beads were treated with various methods. Ibuprofen release from alginate beads in phosphate buffer (pH 7.4) was laster than in distilled water and dilute HCl. The release of ibuprofen was more sustained in bead than simple mixture and coprecipitate of ibuprofen and sodium alginate. The dissolution rate of ibuprofen was decreased in using of bead that hardened with formaldehyde. The dissolution rate of the drug from the bead was the fastest in 12 hour dried beads, 1.5%-sodium alginate concentration and 1%-calcium chloride concentration. Sodium alginate bead can be used as a sustaind release drug delivery system of water-insoluble drugs.

  • PDF

Coculture of Bovine Chondrocytes with Demineralized Bone Matrix in Alginate Bead and Pellet Cultures (알긴산 배양과 펠렛 배양에서 소연골세포와 탈회골기질의 공배양)

  • Sutradhar, Bibek Chandra;Hong, Gyeong-Mi;Park, Jin-Uk;Choi, Seok-Hwa;Kim, Gon-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2010
  • Bio-integration of cartilage grafts with subchondral bone is a significant clinical challenge. To date, the use of demineralized bone matrix (DBM) has been one of the most effective strategies for bone cell proliferation in vivo. Here, we investigated whether coculture of chondrocytes and DBM could serve as a single-platform system containing all the essential elements for purposive bone and cartilage induction. The aim of this study was to evaluate and compare the phenotype and proliferation of bovine chondrocytes cocultured with DBM in two different culture systems, pellet and alginate bead culture. In alginate bead culture, we observed an increase in chondrocyte number and formation of cell clusters. Typical chondrocytic phenotype was maintained for entire eight weeks. Histological analysis showed that chondrocytes maintained a typical round, plump morphology and there was a gradual increase in lacunae. Both coculture systems yielded an expanded cell population as compared to the controls (chondrocytes alone). The production of glycosaminoglycans was also increased in the coculture systems as compared to controls.

Preparation of Alginate-fibroin Beads with Diverse Structures (다양한 구조를 가진 알긴산-피브로인 비드 제조)

  • Lee, Jin-Sil;Lee, Shin-Young;Hur, Won
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.422-426
    • /
    • 2011
  • Alginate bead has been supplemented with various polymers to control permeability and to enhance mechanical strength. In this report, fibroin-reinforced alginate hydrogel was prepared, in which spatial localization of fibroin molecules was investigated. Confocal laser scanning microscopy revealed that fibroin molecules formed a fibrous network in the alginate-fibroin beads, which was expected to enhance mechanical strength as same as in many composite materials. Uniaxial compression test showed that fibroin-reinforced alginate beads had increased mechanical strength only after methanol treatment that caused ${\beta}$-sheet formation among fibroin molecules. Simultaneous curing and dialysis of alginate beads were carried out to remove excesscalcium but to retain fibroin in the dialysis chamber, which fabricated beads without internal fibrous fluorescent stains. Fibroin molecules were only found beneath the surface of the beads. The fibroin-diffused shell was further processed to form a thick wall after drying or was mobilizedto the centre of the bead by methanol treatment. Accordingly, the structure analyses provide processing methods of fibroin to form a wall or center clumps, which could be applied to design controlled delivery device.

The Effect of Sodium Alginate Coating on the Storage Stability and Dissolution Rate of Enteric Coated Lansoprazole (알긴산 나트륨이 장용코팅된 란소프라졸 제제의 저장안정성 및 용출률에 미치는 영향에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jung-Min;Khang, Gil-Son;Jeong, Je-Kyo;Lee, Jung-Sik;Jeung, Sang-Young;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2002
  • Lansoprazole, pharmaceutics for acid-related diseases, is unstable in low pH environments and generally coated with enteric polymer to obtain gastroresistance in stomach. Because its storage stability is influenced by acidic substitutes of enteric polymer, alkaline chemicals wεre generally addεd to dosage form as a stabilizer. In this experience, we coated lansoprazole bead with sodium alginate and evaluated the effect of bead size and sodium alginate coating on the storage stability and dissolution profile of lansoprazole. Sodium alginate solution containing lansoprazole was sprayed as a droplet into 3% (w/v) $CaCl_2$ solution and the resultant bead was coated with starch, sodium alginate, and hydroxypropyl methylcellulose phthalate. The content of lansoprazole granule not coated with sodium alginate decreased to 57.96% of initial content when stored at a severe condition for 4 weeks, but that of lansoprazole granule coated with sodium alginate before enteric coating decreased little and as the thickness of sodium alginate film increased, the content of bead didn't decreased for 4 weeks. Sodium alginate film also improved the gastroresistance without much influencing the maximum dissolution rate.

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

A Study on the Evaluation of the Adsorption Efficiency of Heavy Metals by the Content of Jellyfish Extract at Immunity Reaction in Alginate bead (알긴산 비드에 혼합된 해파리 면역 반응물질 함량에 따른 중금속 흡착효율 평가에 관한 연구)

  • Jong Hwan Kim;Hyeok Jin Park;Inho Choi;Eunjin Kim;I Song Choi;Jong-Min Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.431-436
    • /
    • 2023
  • As the industry develops, the amount of heavy metals flowing into the ecosystem is increasing. Heavy metals are difficult to decompose and remain in the ecosystem for a long time and cause toxicity, which is removed by physicochemical methods such as adsorption, filtration, and chemical precipitation during water treatment. In this study, Alginate bead was selected as a chelating resin for adsorbing and removing heavy metals, and the Jellyfish Extract at Immunity reaction (JEI) were mixed to evaluate the adsorption efficiency of heavy metals accordingly. beads mixed with JEI showed high adsorption efficiency in lead (79-99%) and copper (64-70%) according to the characteristics of Alginate, and low adsorption efficiency in cadmium (25-37%) and zinc (5-6%). Although heavy metal adsorption did not increase in proportion to the content of JEI, 50% and 100% JEI beads showed significant increases. As a result of applying the reaction rate equation, it was found that it was more suitable for the pseudo-secondary reaction equation than the pseudo-first reaction equation.

Preparation and Stability of Sodium Alginate Beads Containing ${\beta}-Carotene$ (베타카로틴 함유 알긴산 나트륨 비드의 제조 및 안정성)

  • Go, Kwang-Mook;Koo, Ja-Seong;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.323-327
    • /
    • 1999
  • To protect ${\beta}-carotene$ at the stomach and to release rapidly at the intestine we prepared alginate beads containing ${\beta}-carotene$. ${\beta}-carotene$ and alginate solution was homogenized and prepared o/w emulsion was prepared. It was poured into $Ca^{2+}$ solution through syringe needle. The gel was formed spontaneously and alginate beads containing ${\beta}-carotene$ were prepared. ${\beta}-Carotene$ was incorporated into the beads more than 95%. The release rate of ${\beta}-carotene$ was dependent on the concentration of $Ca^{2+}$, ${\beta}-carotene$ and surfactants. However, the concentration of alginate did not affect the release rate of ${\beta}-carotene$. The high concentration of $Ca^{2+}$ slowed down the release rate of ${\beta}-carotene$. The addition of surfactants in the ${\beta}-carotene$beads increased the release rate of ${\beta}-carotene$ in the order of Tween 80 > Cremophor > Span 20. The contents of ${\beta}-carotene$ and diameter of ${\beta}-carotene$ beads did not change significantly at $50^{\circ}C$ for 20 days.

  • PDF