Coculture of Bovine Chondrocytes with Demineralized Bone Matrix in Alginate Bead and Pellet Cultures

알긴산 배양과 펠렛 배양에서 소연골세포와 탈회골기질의 공배양

  • Sutradhar, Bibek Chandra (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University) ;
  • Hong, Gyeong-Mi (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University) ;
  • Park, Jin-Uk (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Seok-Hwa (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Gon-Hyung (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University)
  • Accepted : 2010.03.23
  • Published : 2010.04.30

Abstract

Bio-integration of cartilage grafts with subchondral bone is a significant clinical challenge. To date, the use of demineralized bone matrix (DBM) has been one of the most effective strategies for bone cell proliferation in vivo. Here, we investigated whether coculture of chondrocytes and DBM could serve as a single-platform system containing all the essential elements for purposive bone and cartilage induction. The aim of this study was to evaluate and compare the phenotype and proliferation of bovine chondrocytes cocultured with DBM in two different culture systems, pellet and alginate bead culture. In alginate bead culture, we observed an increase in chondrocyte number and formation of cell clusters. Typical chondrocytic phenotype was maintained for entire eight weeks. Histological analysis showed that chondrocytes maintained a typical round, plump morphology and there was a gradual increase in lacunae. Both coculture systems yielded an expanded cell population as compared to the controls (chondrocytes alone). The production of glycosaminoglycans was also increased in the coculture systems as compared to controls.

연골밑뼈와 연골이식편 사이의 생유합성은 임상적으로 중요한 과제이다. 현재까지 탈회골기질의 이용은 생체내 뼈세포 증식에 있어서 가장 효과적인 방법이다. 본 연구에서는 연골세포와 탈회골기질의 공배양을 통해 뼈와 연골의 유도 목적에 부합되는 모든 필수적인 요소를 갖는 재료로 이용가능 여부를 확인하고자 실시되었다. 본 연구의 목적은 두 종류의 배양법 즉, 펠렛 배양과 알긴산 배양에서 탈회골기질과 공배양된 소 연골세포의 증식과 표현형을 비교, 평가하는 것이다. 알긴산 배양에서는 세포 군집의 형성 및 연골세포의 수적 증가가 관찰되었다. 전형적인 연골세포의 표현형이 시험기간인 8주에 걸쳐 유지되었으며, 조직학적인 검사에서 연골세포는 일반적인 원형의 형태를 유지하였고, 연골세포방과 연골세포가 점진적으로 증가하였다. 대조군(연골세포 단독배양)에 비해 탈회골기질과 공배양한 두군 모두에서 많은 세포증식이 관찰되었으며, 글리코사미노글리칸의 생성 또한 증가되었다.

Keywords

References

  1. Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, Veys EM, Verbruggen G. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 2001; 60: 781-790. https://doi.org/10.1136/ard.60.8.781
  2. Andrades JA, Santamaria JA, Nimni ME, Becerra J. Selection and amplification of a bone marrow cell population and its induction to the chondro-osteogenic lineage by rhOP-1: an in vitro and in vivo study. Int J Dev Biol 2001; 45: 689-693.
  3. Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM. Principles of cartilage repair and regeneration. Clin Orthop1997; 342: 254-269. https://doi.org/10.1097/00003086-199709000-00033
  4. Charles A, Vacanti MD, Lawrence J, Bonassar MP, Vacanti MD, John Shufflebarger MD. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001; 344: 1511-1514. https://doi.org/10.1056/NEJM200105173442004
  5. Chubinskaya S, Huch K, Schulze1 M, Otten L, Aydelotte MB, Cole AA. Human articular chondrocytes cultured in alginate beads maintain their gene expression. Cells and Materials 1998; 8: 151-160.
  6. Gelse K, Aigner T, Stove J, Schneider H. Gene therapy approaches for cartilage injury and osteoarthritis. Curr Med Chem 2005; 4: 265-279.
  7. Gurevitch O, Kurkalli BG, Prigozhina T, Kasir J, Gaft A, Slavin S. Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells 2003; 21: 588-597. https://doi.org/10.1634/stemcells.21-5-588
  8. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report, Knee Surg Sports Traumatol Arthrosc 1997; 5: 262-267. https://doi.org/10.1007/s001670050061
  9. Homminga GN, Bulstra SK, Bouwmeester PSM, van der Linden AJ. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br 1990; 72: 1003-1007. https://doi.org/10.2106/00004623-199072070-00007
  10. Homminga GN, Bulstra SK, Kuijer R, von der Linden AJ. Repair of sheep articular cartilage defects with a rabbit costal perichondral graft. Acta Orthop Scand 1991; 62: 415-418. https://doi.org/10.3109/17453679108996635
  11. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarth Cart 2002; 10: 432-463. https://doi.org/10.1053/joca.2002.0801
  12. Hwang NS, Varghese S, Elisseeff J. Derivation of chondro-genically- committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 2008; 3: e2498. https://doi.org/10.1371/journal.pone.0002498
  13. Johnson LO. Arthroscopic abrasion arthroplasty. Historical and pathological perspective: present status. Arthroscopy 1986; 2: 54-69. https://doi.org/10.1016/S0749-8063(86)80012-3
  14. Koichi M, Robert LS, Michael JH, Eugene JT. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J Ortho Res 2003; 21: 139-148. https://doi.org/10.1016/S0736-0266(02)00109-2
  15. Lemare F, Steimberg N, Le-Griel C, Demignot S, Adolphe M. Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-$\beta$. J Cell Physiol 1998; 176: 303-313. https://doi.org/10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S
  16. Liu G, Sun J, Li Y, Zhou H, Cui L, Liu W, Cao Y. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: An in vitro and in vivo study. Calcif Tissue Int 2008; 83: 176-185. https://doi.org/10.1007/s00223-008-9159-9
  17. Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y. Repair of goat tibial defects with bone marrow stromal cells and $\beta$-tricalcium phosphate. J Mater Sci Mater Med 2008; 19: 2367-2376. https://doi.org/10.1007/s10856-007-3348-3
  18. Ludwig SC, Kowalski JM, Boden SD. Osteoinductive bone graft substitutes. Eur Spine J 2000; 9: 119-125. https://doi.org/10.1007/PL00008317
  19. Mauney JR, Blumberg J, Pirun M, Volloch V, Vunjak-Novakovic G, Kaplan DL. Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. Tissue Eng 2004; 10: 81-92. https://doi.org/10.1089/107632704322791727
  20. Mo XT, Guo SC, Xie HQ, Deng L, Zhi W, Xiang Z, Li XQ, Yang ZM. Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 2009; 45: 42-51. https://doi.org/10.1016/j.bone.2008.07.240
  21. Munirah S, Kim SH, Ruszymah BH, Khang G. The use of fibrin and poly (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cell Mater 2008; 15: 41-52. https://doi.org/10.22203/eCM.v015a04
  22. Petit B, Masuda K, D'Souza AL, Otten L, Pietryla D, Hartmann DJ, Morris NP, Uebelhart D, Schmid TM, Thonar EJ-MA. Characterization of crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison of two distinct matrix compartments. Exp Cell Res 1996; 225: 151-161. https://doi.org/10.1006/excr.1996.0166
  23. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20: 933-936. https://doi.org/10.1038/nbt726
  24. Rodrigo JJ, Steadman RJ, Silliman JF, Fulstone HA. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 1994; 7: 109-116.
  25. Rougraff BT, Kling TJ. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow. J Bone Joint Surg Am 2002; 84: 921-929. https://doi.org/10.2106/00004623-200206000-00005
  26. Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clin Orthop 2001; 391: 161-170. https://doi.org/10.1097/00003086-200110001-00016
  27. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 2007; 9: 213-227. https://doi.org/10.1186/ar2195
  28. Stone KR, Walgenbach A. Surgical technique for articular cartilage transplantation to full-thickness cartilage defects in the knee joint. Oper Tech Orthop 1997; 7: 305-311. https://doi.org/10.1016/S1048-6666(97)80034-1
  29. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 1995; 18: 1153-1158.
  30. Torricelli P, Fini M, Rocca M, Giavaresi G, Giardino R. Xenogenic demineralized bone matrix: osteoinduction and influence of associated skeletal defects in heterotopic bone formations in rats. Int Orthop 1999; 23: 178-181. https://doi.org/10.1007/s002640050341
  31. Trentz OA, Hoerstrup SP, Sun LK, Bestmann L, Platz A, Trentz OL. Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials 2003; 24: 3417-3426. https://doi.org/10.1016/S0142-9612(03)00205-9
  32. Tsuchiya K, Chen G, Ushida T, Matsuno T, Tateishi T. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater Sci Eng C 2004; 24: 391-396. https://doi.org/10.1016/j.msec.2003.12.014
  33. van Susante JL, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RP. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999; 20: 1167-1175. https://doi.org/10.1016/S0142-9612(97)00190-7
  34. van Susante JL, Buma P, van Osch GJ, Versleyen D, van der Kraan PM, van der Berg WB, Homminga GN. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand 1995; 66: 549-556. https://doi.org/10.3109/17453679509002314
  35. Yamaguchi M, Hirayama F, Murahashi H, Azuma H, Sato N, Miyazaki H, Fukazawa K, Sawada K, Koike T, Kuwabara M, Ikeda H, Ikebuchi K. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 2002; 4: 109-118. https://doi.org/10.1080/146532402317381811
  36. Yang IH, Kim SH, Kim YH, Sun HJ, Kim SJ, Lee JW. Comparison of phenotypic characterization between "Alginate Bead" and "Pellet" culture system as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 2004; 45: 891-900. https://doi.org/10.3349/ymj.2004.45.5.891
  37. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 2007; 28: 1005-1013. https://doi.org/10.1016/j.biomaterials.2006.10.015