• Title/Summary/Keyword: 실물형 연소기

Search Result 42, Processing Time 0.026 seconds

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(II) - Gas Generator (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(II)-가스발생기)

  • Choi, Hwan-Seok;Seo, Seong-Hyeon;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1038-1047
    • /
    • 2009
  • The development process of a gas generator for a 30-tonf pump-fed space liquid rocket engine is described. Starting from the development of an injector, followed by subscale and full-scale test specimens, the development of LOx/kerosene fuel-rich gas generator has been concluded successfully. Various analytical methods have been utilized in the course of design and the performance requirements have been verified experimentally through ignition tests, combustion performance and stability assessment tests and duration tests. The gas generator has proven its workability and stability within a defined operation window of varying chamber pressure and mixture ratio and demonstrated compliance to the performance and life time requirements.

Combustion Characteristics of Full-scale Gas Generator for 30 ton Class Liquid Rocket Engine (30톤급 실물형 가스발생기 연소 특성)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.129-132
    • /
    • 2008
  • Combustion characteristics of a gas generator for a 30 ton-class liquid rocket engine were studied. At the early stage of development, the combustion tests of the gas generator were performed by only using the nozzle which substitute for a turbine manifold exit. Then, the extension tube was applied between the gas generator and the nozzle for imitating the resonant mode of gas generator and turbine manifold. Finally, the hot-firing tests were performed on the condition of connecting the gas generator with the turbine manifold. In the paper, the step-by-step results such as temperature distribution and pressure fluctuations were analyzed.

  • PDF

Effect of $CO_2$ dilution on Combustion Instabilities in dual premixed flame (이중 예혼합화염에서 $CO_2$ 희석이 연소불안정에 미치는 영향)

  • Lee, Kang-Yeop;Kim, Hyung-Mo;Park, Poo-Min;Hwang, O-Sik;Yang, Soo-Seok;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.763-768
    • /
    • 2011
  • The effects of $CO_2$-dilution on combustion instability were studied in order to apply biogas in a dual lean premixed gas turbine combustor on a real-scale dual lean premixed burner head which is originally developed for Natural Gas fuel. Combustion instability is reduced by $CO_2$ dilution effect according to the result of dynamic pressure signal and phase-resolved $OH^*$ images. The reason for this is that dilution of $CO_2$ reduces heat release perturbation and increases flame volume due to reduction of the flame speed and expansion of flame surface.

  • PDF

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

Forming Characteristics of Outer Shell Structure for Thrust Chamber Nozzle Extension (연소기 노즐확장부 외피구조물의 성형 특성)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.428-432
    • /
    • 2010
  • A study on the forming characteristics of outer shell structure for thrust chamber nozzle extension has been performed. In order to identify anisotropy of cold rolled sheet metal, three types of tensile specimens according to the direction to the sheet rolling axis were prepared and tested, and Landford's values were obtained using the results and applied to structural analysis. Forming characteristics of the outer shell structure of the nozzle extension are investigated through manufacturing and forming of the full scale outer shell structures, and strain values obtained by the forming processes are compared to the numerical analysis results. The results obtained by this study will be utilized to design forming tools and processes for manufacturing other outer shell structures which have a bigger expansion area ratio.

  • PDF

Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engine (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Byon, Eung-Sun;Rhee, Byong-ho;Han, Yeoung-Min;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.864-870
    • /
    • 2017
  • The propellants are burned in the pre-burner of the staged combustion cycle engine, and the resulting hot gas drives the turbine, and the turbine operates the turbo pump. The burned gas passing through the turbo pump is supplied to the combustor at high temperature and high pressure, where the gas is supplied in an excess of fuel or an excess of oxidant depending on the amount of fuel or oxidant. When the cycle works at oxidizer-rich staged combustion, its metal pipe can ignite or explode by the impact of even small particles. In this study, we develop the powder combinations for anti-oxidation coating through the analysis of other coating materials and establish the coating process.

  • PDF

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

Performance Prediction of Liquid Rocket Thrust Chambers with Nonuniform Propellant Mixing (추진제의 비균일 혼합분포를 고려한 액체로켓 추력실의 성능 예측기법 개발)

  • 김성구;최환석;한영민;이광진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.82-88
    • /
    • 2006
  • In order to effectively reduce thermal loads on regenerative cooled walls, fuel cooling injectors and film cooling devices have often been employed. The present study has established a numerical methodology for prediction of performance and near-wall temperature distribution taking into account the nonuniform mixing due to these additional cooling devices. A correction procedure for main propulsive parameters has also been proposed based on comparison between prediction and experimental data. Under the computational framework of this study, the predicted results were in good agreement with hot-firing test data for a 30 tonf-class full-scale combustor at the design and off-design conditions. As a consequence, the present numerical method is expected to be useful for design and evaluation of regenerative cooled liquid rocket thrust chambers.

Rocket Engine Test Facility Improvement for Hot Firing Test of 75 ton-f Class Gas Generator and Cold Flow Test (75톤급 가스발생기 연소시험을 위한 시험장 개선 및 수류시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.29-33
    • /
    • 2009
  • On the basis of the development experience of a gas generator for the 30 ton-f thrust liquid rocket engine combustor a Subscale Ground Firing Test Facility was designed and fabricated for a gas generator for the 75 ton-f thrust liquid rocket engine combustor. The Subscale Ground Firing Test Facility developed is going to be used to develop 75 ton-f class gas generator. Acquired data and test technique from this facility will be used to develope the high performance liquid rocket engine combustor and the Ground Firing Test Facility. This report describes the improved Subscale Ground Firing Test Facility for 75 ton-f class gas generator and results of the cold flow test.

  • PDF

Chung-nam National University's Status of Research on Technology of the Next Generation Rocket Engine System (충남대학교 차세대 로켓엔진 시스템 기술 연구 현황)

  • Jang, Jee-Hun;Jeon, Jun-Su;Kim, Tae-Woan;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.196-200
    • /
    • 2012
  • To acquire indigenous development abilities of a future space launcher, bi-propellant liquid rocket engines using environmentally clean propellants such as hydrogen peroxide and methane have been developed by Chungnam national university. The necessary development technologies for the future liquid rocket engines were defined and have been acquired step-by-step in advance by sub-scale liquid rocket engines. Core techniques of design/manufacture/experiments to develop a future prototype liquid rocket engine will be obtained by this study.

  • PDF