Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.459-466
/
2020
The sound collected through the multi-rotor unmanned aerial vehicle (UAV) includes the ego noise generated by the motor or propeller, or the wind noise generated during the flight, and thus the quality is greatly impaired. In a multi-rotor UAV environment, both the magnitude and phase of the target sound are greatly corrupted, so it is necessary to enhance the sound in consideration of both the magnitude and phase. However, it is difficult to improve the phase because it does not show the structural characteristics. in this study, we propose a CNN-based complex spectrogram enhancement method that removes noise based on complex spectrogram that can represent both magnitude and phase. Experimental results reveal that the proposed method improves enhancement performance by considering both the magnitude and phase of the complex spectrogram.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.4
/
pp.543-548
/
2021
The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.7
/
pp.1088-1097
/
2021
Vibration data of mechanical equipment inevitably have noise. This noise adversely af ects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.
Since speech impairment is prevalent in patients with Parkinson's disease (PD), speech recognition systems suitable for these patients are needed. In this paper, we propose a speech recognition system that effectively recognizes the speech of patients with PD. The speech recognition system is firstly pre-trained with the Globalformer using the speech data from healthy people, and then fine-tuned using relatively small amount of speech data from the patient with PD. For this analysis, we used the speech dataset of healthy people built by AI hub and that of patients with PD collected at Inha University Hospital. As a result of the experiment, the proposed speech recognition system recognized the speech of patients with PD with Character Error Rate (CER) of 22.15 %, which was a better result compared to other methods.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.409-416
/
2024
With the expansion of floating-point operation requirements for fast high-speed data signal processing and logic operations, the speed of the floating-point operation unit is the key to affect system operation. This paper studies the performance characteristics of different floating-point multiplier schemes, completes partial product compression in the form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding, the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by 2.5%.
Kyung-won Lee;Dan-bi Ou;Ki-man Kim;Tae Hyeong Kim;Heechang Lee
The Journal of the Acoustical Society of Korea
/
v.43
no.4
/
pp.383-390
/
2024
When measuring the radiated noise of an underwater vehicle, the range information between the vehicle and the receiver is an important factor, but since Global Positioning System (GPS) is not available in underwater, an alternative method is needed. As an alternative, the range is measured by estimating the arrival time, arrival time difference, and arrival frequency difference using a separate acoustic signal. However, errors occur due to the channel environment, and these outliers become obstacles in continuously measuring range. In this paper, we propose a method to reduce errors by curve fitting with a function in the form of a V-curve as a post-processing to remove outliers that occurred in the process of measuring range information. Simulation, lake and sea trials were conducted to verify the performance of the proposed method. In the results of the lake trial, the range estimation error was reduced by about 85 % from the Root Mean Square Error (RMSE) point of view.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.24
no.1
/
pp.98-105
/
2013
This paper presents a finite-difference time-domain(FDTD) simulation and a data processing technique for radar sensing of the internal structure of a wall using an ultra-wide band antenna. We first designed an ultra-wide band anti-podal vivaldi antenna with a frequency range of 0.3~7 GHz which is chosen to be relatively low after considering the characteristics of wave attenuation, wall penetration, and range resolution. In this study the two-dimensional FDTD technique was used to simulate a wall-penetration-radar experiment under practical conditions. The next, the measured radiation pattern of the practical antenna is considered as an equivalent source in the FDTD simulation, and the reflection data of a concrete wall and targets are obtained by using the simulation. Then, a data processing technique has been applied to the FDTD reflection data to get a radar image for remote sensing of the internal structure of the wall. We compared the two different source excitations in the FDTD simulation; (1) commonly-used isotropic point sources and (2) polynomial curve fitting sources of the measured radiation pattern. As a result, when we apply the measured antenna pattern into the FDTD simulation, we could obtain about 2.5 dB higher signal to noise level than using a plane wave incidence with isotropic sources.
The purpose of the study is to examine sports-related cognitive functions through a systematic review and to suggest effective instruments to measure the cognitive functions. The present study was conducted based on the systematic review and meta-analysis protocol-the PRISMA. Of 429 articles searched through keywords from 2008 to 2020, 45 articles that met the selection criteria were analyzed. It was revealed that athletes had better cognitive functions than non-athletes, that the higher the sports expertise was, the higher the cognitive functions, and that there were differences in cognitive functions according to the sport types. The primary cognitive functions related to sports performance summarized as executive functions (inhibition ability, cognitive flexibility), information processing speed, spatial ability, and attention. As tasks for measuring each cognitive function, a stop signal task for inhibition ability, a design flexibility task for cognitive flexibility, a simple and choice reaction time test for information processing, a mental rotation task for spatial ability, and an attention network test for attention are appropriate.
Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.
Digital hearing aids offer many advantages over conventional analog hearing aids. With the advent of high speed digital signal processing chips, new digital techniques have been introduced to digital hearing aids. In addition, the evaluation of new ideas in hearing aids is necessarily accompanied by intensive subject-based clinical tests which requires much time and cost. In this paper, we present an objective method to evaluate and predict the performance of hearing aid systems without the help of such subject-based tests. In the hearing impairment simulation(HIS) algorithm, a sensorineural hearing impairment medel is established from auditory test data of the impaired subject being simulated. Also, the nonlinear behavior of the loudness recruitment is defined using hearing loss functions generated from the measurements. To transform the natural input sound into the impaired one, a frequency sampling filter is designed. The filter is continuously refreshed with the level-dependent frequency response function provided by the impairment model. To assess the performance, the HIS algorithm was implemented in real-time using a floating-point DSP. Signals processed with the real-time system were presented to normal subjects and their auditory data modified by the system was measured. The sensorineural hearing impairment was simulated and tested. The threshold of hearing and the speech discrimination tests exhibited the efficiency of the system in its use for the hearing impairment simulation. Using the HIS system we evaluated three typical hearing aid algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.