• Title/Summary/Keyword: 신소재의 적용

Search Result 630, Processing Time 0.026 seconds

Analysis of Application Cases and Evaluation of Effectiveness on Portable Dynamic Cone Penetration Test (DCPT) to Identify the Deterioration Cause of Damaged Reinforced Earth Walls (보강토옹벽의 피해원인 규명을 위한 휴대형 동적콘관입시험(DCPT) 적용사례 분석 및 효용성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.95-109
    • /
    • 2020
  • In this study, a total of six site cases were reviewed to assess the site applicability of portable dynamic cone penetration test (DCPT) by identifying the cause of damage to the damaged reinforced earth wall using portable dynamic cone penetration test. An improved dynamic concrete penetration tester was used at the site to enable ground surveys of more than 6 meters. The test results were compared with the results of the standard penetration test (SPT) and the correlation was analyzed. Through the analysis of various field application cases, it was found that portable dynamic cone penetration test was very convenient to apply at the site of the damaged reinforced earth wall, and DCPT could play a major role in identifying the cause of damage and verifying stability of the retaining wall by continuously identifying the ground strength. In addition, it was found that the results of the dynamic cone penetration test and the standard penetration test showed a correlation of N≒(1/3~2/3)·Nd in sandy soil.

Efficient Quantum Dot Light-emitting Diodes with Zn0.85Mg0.15O Thin Film Deposited by RF Sputtering Method (RF Sputtering 방법으로 증착된 Zn0.85Mg0.15O 박막을 적용한 고효율 양자점 전계 발광 소자 연구)

  • Kim, Bomi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.49-53
    • /
    • 2022
  • In this study, quantum dot light-emitting diodes (QLEDs) of the optimized EL performance with a radio frequency (RF) sputtered Zn0.85Mg0.15O thin film as an electron transport layer (ETL). In typical QLEDs, ZnO nanoparticles (NPs) are widely used materials for ETL layer due to their advantages of high electron mobility, suitable energy level and easy capable of solution processing. However, the instability problem of solution-type ZnO NPs has not yet been resolved. To solve this problem, ZnMgO thin film doped with 15% Mg of ZnO was fabricated by RF sputtering and optimized for the device applied as an ETL. The QLEDs of optimized ZnMgO thin film exhibited a maximum luminance of 15,972 cd/m2 and a current efficiency of 7.9 cd/A. Efficient QLEDs using sputtering ZnMgO thin film show the promising results for the future display technology.

Assessment of Displacement and Axial Force of Earth Retaining Wall at Each Excavation Step Using Direct Algorithm Back Analysis (직접알고리즘 역해석 기법을 이용한 굴착단계별 흙막이 가시설 변위 및 축력의 적정성 평가)

  • So-Ra Kang;Je-Seok Jeon;Yeong-Jin Lee;Jun-Seok Lee;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • In this study, direct algorithm-based back analysis was utilized to perform back analysis on two actual earth retaining wall fields, which was then compared with genetic algorithm-based method to evaluate the suitability of the back analysis. Additionally, in order to propose effective utilization methods of the program, the measurement data, as the input for the back analysis, was varied for each excavation step, and the applicability of the back analysis results(displacement, axial force) was examined. The research findings indicate that both direct algorithm and genetic algorithm show high applicability; however, the optimization for this program is better predicted by the direct algorithm. Moreover, in order to effectively use the back analysis program employing the direct algorithm, it was evaluated that relatively accurate prediction of the earth retaining wall behavior could be achieved by inputting measurement data from the 7th excavation step for fields with final excavation steps ranging from 8 to 11.

Induction Heating of Cylinderical MoSi2-based Susceptor (실린더형 MoSi2계 발열체의 유도가열 적용)

  • Lee, Sung-Chul;Kim, Yo Han;Myung, Jae-ha;Kim, Bae-Yeon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.553-558
    • /
    • 2019
  • In present study, the cylindrical susceptor by the slip casting method was designed to apply high-temperature induction heating by using $(Mo,W)Si_2$ ceramics. $MoSi_2$-based materials were synthesized by SHS (Self-propagating High-temperature Synthesis) method. The phase and crystal structure of $MoSi_2$-based materials were confirmed by XRD analysis. The shape of cylindrical mold was synthesized for various thickness by using the slip casting method. Finally, the susceptor for induction heating was processed by sintering and heat treatment to form $SiO_2$ layer, which was confirmed on the surface of susceptor by SEM/EDS analysis. To evaluate the heating performance of $(Mo,W)Si_2$ cylinder susceptor, we measured the maximum surface temperature and heating rate in comparison with the rod heating element under constantly applied power. The induction heating of the $(Mo,W)Si_2$ cylinder showed excellent heating performance, reaches the maximum temperature of $1457^{\circ}C$, with the average heating rate of $19^{\circ}C/s$ at 2 kW

Experimental Study on the Strengthening Effect of External Prestressing Method Considering Deterioration (구조물 노후도를 반영한 외부긴장 보강 효과에 관한 실험적 연구)

  • Kim, Sang-Hyun;Jung, Woo-Tai;Kang, Jae-Yoon;Park, Hee-Beom;Park, Jong-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Concrete structures gradually age due to deterioration of materials or excess loads and environmental factors, and their performance decreases, affecting the usability and safety of structures. Although external tension construction methods are widely used among the reinforcement methods of old bridges, it is insufficient to identify the effects and effects of reinforcement depending on the level of aging. Therefore, in this study, a four-point loading experiment was conducted on the subject with the non-reinforced and external tensioning method to confirm the reinforcement effect of the external tensioning method, assuming the aging of the structure as a reduction in the compressive strength and tensile reinforcement of concrete, to analyze the behavior of the reinforcement and confirm the reinforcement effect. As a result of the experiment, it was difficult to identify the amount of reinforcement in the extreme condition due to early elimination of the anchorage. Therefore, compliance with the regulations on anchor bolts is required when applying the external tension reinforcement method. Crack load and yield load increased depending on whether external tension was reinforced, but before the crack, the stiffness before and after reinforcement was similar, making it difficult to confirm the reinforcement effect.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Mineral Processing Characteristics of Titanium Ore Mineral from Myeon-San Layer in Domestic Taebaek Area (국내 태백지역 면산층 타이타늄 광석의 기초 선광 연구)

  • Yang-soo Kim;Fausto Moscoso-Pinto;Jun-hyung Seo;Kye-hong Cho;Jin-sang Cho;Seong-Ho Lee;Hyung-seok Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.54-66
    • /
    • 2023
  • Titanium's importance as a mineral resource is increasing, but the Korean industry depends on imports. Ilmenite is the principal titanium ore. However, research and development from raw materials have not been investigated yet in detail. Hence, measures to secure a stable titanium supply chain are urgently needed. Accordingly, through beneficiation technology, we evaluated the possibility of technological application for the efficient recovery of valuable minerals. As a result of the experiments, we confirmed that mineral particles existed as fine particles due to weathering, making recovery through classification difficult. Consequently, applying beneficiation technologies, i.e., specific gravity separation, magnetic separation, and flotation, makes it possible to recover valuable minerals such as hematite and rutile. However, there are limitations in increasing the quality and yield of TiO2 due to the mineralogical characteristic of the hematite and rutile contained in titanium ore. Hametite is combined with rutile even at fine particles. Therefore, it is essential to develop mineral processing routes, to recover iron, vanadium, and rare earth elements as resources. On that account, we used grinding technology that improves group separation between constituent minerals and magnetic separation technology that utilizes the difference in magnetic sensitivity between fine mineral particles. The development of beneficiation technology that can secure the economic feasibility of valuable materials after reforming iron oxide and titanium oxide components is necessary.

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

The Evaluation of Geosynthetic Clay Liner as a barrier layer for the Final Cover System in landfill (폐기물 매립지 최종복토 차단층으로서 Geosynthetic Clay Liner 적용성 평가)

  • Lee, Jung-Lan;Moon, Chul-Hwan;Jung, Chan-Kee;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2004
  • One of the most important concern in the design of barrier layer in to protect the water through the landfill. The barrier layer consists of a single compacted clay liner(CCL) or a composite liner with high density polyethylene(HDPE). The construction of barrier layer at the edge of cover system usually has some problems because of steep slope in the landfill. In this study the authors evaluate the geosynthetic clay liner(GCL) as a barrier layer at the edge of the final cover system in landfill. The GCLs were simulated the stability of slope, the HELP(Hydrologic Evaluation of Landfill Performance) and the durability of environmental situation. As the results, the GCL has more stable than the CCL. Therefore, the authors suggest that the GCL in good for the barrier layer of the final cover system in the landfill.

  • PDF

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF