DOI QR코드

DOI QR Code

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis

알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가

  • Han, Seong Min (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University) ;
  • Im, Kwang Seop (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Jeong, Ha Neul (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Do Hyeong (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University)
  • 한성민 (경상국립대학교 나노신소재공학부 고분자공학과) ;
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 정하늘 (경상국립대학교 나노신소재융합공학과) ;
  • 김도형 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 나노신소재공학부 고분자공학과)
  • Received : 2021.12.19
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

본 연구에서는 낮은 막 저항을 가지는 알칼리 수전해 시스템 적용을 위한 격리막 제조를 위하여 PPS (Polyphenylene sulfide)를 지지체로 사용하고 Polysulfone과 무기물 첨가제를 이용하여 격리막을 제조한 뒤, 지지체의 두께와 다공도에 대한 영향을 분석하였다. 지지체로 사용된 PPS 펠트를 온도(100℃, 150℃, 200℃)와 압력(1톤, 2톤, 3톤, 5톤)의 변수를 두어 압축을 진행하여 두께를 조절하고자 하였으며, 무기입자로서 친수성이 높고 내알칼리성이 뛰어난 BaTiO3와 ZrO2를 사용하여 polysulfone과 함께 슬러리를 제조하고 압축한 PPS 펠트 위에 캐스팅하여 다공성 격리막을 제조할 수 있었다. 전자주사현미경(SEM)을 통해 압축 조건에 따른 분리막의 모폴로지 변화를 확인하고, 기공도를 계산하였으며, 압축 조건이 증가할수록 두께와 기공도가 감소하는 경향을 확인하였다. 수전해용 격리막으로서 사용이 가능한지를 확인하기 위하여 다양한 특성 평가를 진행하였다. 기계적강도를 측정한 결과 압축 조건(온도와 압력)이 증가할수록 인장강도가 점차 증가하는 경향을 확인하였다. 최종적으로 내알칼리성 테스트를 통하여 제조한 다공성 격리막이 우수한 내알칼리성을 가지는 것을 확인하였고, I-V 테스트를 통하여 100℃와 150℃ 조건에서 압축된 막들이 기존의 압축하지 않은 막보다 낮은 전압을 가지며 성능이 향상되었다는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 교육부(한국연구재단)의 지자체-대학 협력기반 지역혁신사업(경상남도 지역혁신플랫폼 스마트제조엔지니어링)과 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(과제번호: NRF-2020R1A6A1A03038697).

References

  1. C. K. Park, "Climate change; Its impacts and our strategy to address it, Environmental Engineering Research", J. Korean Soc. Precis. Eng., 30, 12, 1179-1182 (2008).
  2. K. W. Cho and J. H. Maeng, "Some thoughts on direction to cope with the sea level rise in Korea", Ocean Sci. J., 10, 4, 227-234 (2007).
  3. K. Y. Kim, "Law Sociology of the Paris Agreement - Paris Climate Compact: A Peripatetic Attempt Roundabout with the Concern and Socio-legal Insight", Chosun Law Journal, 26, 1, 41-90 (2019). https://doi.org/10.18189/isicu.2019.26.1.41
  4. S. Han, K. D. Cho, and J. W. Jung, "A Study on Perception and knowledge of 'Renewable Energy' of the Elementary School Teachers", Environ Educ Res, 23, 2, 82-96 (2010).
  5. C. M. Kim and K. Y. Kim, "a study on economic analysis of new renewable energy power (photovoltaic, wind power, small hydro, biogas)", J. Korean Ceram. Soc., 28, 6, 70-77 (2008).
  6. J. I. Park, H. C. Woo, and J. H. Lee, "Production of Bio-energy from marine algae: Status and Perspectives", Hwahak Konghak, 46, 5, 833-844 (2008).
  7. S. H. Kang, C. S. Jin, and J. W. Kim, "Analysis of the world energy status and hydrogen energy technology R&D of forelgn countrles", Trans. of the Korean Hydrogen and New Energy Society, 18, 2, 216-223 (2007).
  8. S. K. Ryi, J. Y. Han, C. H. Kim, H. W. Lim, and H. Y. Jung, 'Technical Trends of Hydrogen Production", Clean Technol., 23, 2, 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
  9. M. S. Lim, "Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen", Trans. of the Korean Hydrogen and New Energy Society, 17, 2, 218-226 (2006).
  10. J. H. Park, C. H. Kim, H. S. Cho, S. K. Kim, and W. C. Cho, "Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources", Trans. of the Korean Hydrogen and New Energy Society, 31, 4, 337-344 (2020). https://doi.org/10.7316/KHNES.2020.31.4.337
  11. F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: An overview", Int. J. Hydrog. Energy, 45, 7, 3847-3869 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.059
  12. K. S. Im, T. Y. Son, K. Y. Kim, J. Kim, and S. Y. Nam, "Research and Development Trend of Electrolyte Membrane Applicable to water Electrolysis System", Appl. Chem. Eng., 30, 4, 389-398 (2019). https://doi.org/10.14478/ACE.2019.1052
  13. G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. of the Korean Hydrogen and New Energy Society, 18, 1, 95-108 (2007).
  14. J. H. Park, S. Y. Bong, C. H. Ryu, and G. J. Hwang, "Study on the Preparation of Polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis", Membr. J., 23, 6, 469-474 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.469
  15. H. S. Choi, D. S. Yim, C. H. Rhyu, J. C. Kim, and G. J. Hwang, "Study on the Electrode Characteristics for the Alkaline Water Electrolysis", Trans. of the Korean Hydrogen and New Energy Society, 23, 2, 117-124 (2012). https://doi.org/10.7316/KHNES.2012.23.2.117
  16. K. S. Moon and D. W. Park, "The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis", J. Energy Eng., 24, 2, 34-39 (2015). https://doi.org/10.5855/ENERGY.2015.24.2.034
  17. J. H. Lee, W. C. Cho, and C. H. Kim, "Research Trend and Prospect of Membranes for Water Electrolysis", KIC News, 24, 4, 1-21 (2021).
  18. K. S. Im, T. Y. Son, H. N. Jeong, D. J. Kwon, and S. Y. Nam, "A Research Trend on Diaphragm Membranes Alkaline Water Electrolysis System", Membr. J., 31, 2, 133-144 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.133
  19. S. Mallick, Z. Ahmad, K. W. Qadir, A. Rehman, R. A. Shakoor, F. Touati, and S. A. Al-Muhtaseb, "Effect of BaTiO3 on the sensing properties of PVDF composite-based capacitive humidity sensors", Ceram. Int., 46, 3, 2949-2953 (2020). https://doi.org/10.1016/j.ceramint.2019.09.291
  20. Y. J. Lee, N. J. Baek, and C. M. Hong, "Characteristics and application field of polyphenylene sulfide (PPS)", Int. Polym. Sci. Technol., 18, 1, 20-25 (2007).
  21. K. S. Im, T. H. Kim, J. Y. Jang, and S. Y. Nam, "Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane", Membr. J., 30, 2, 138-148 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.138
  22. Z. B. Guo, R. J. Xiu, S. F. Lu, S. C. Yang, and Y. Xiang, "Submicro-pore containing poly (ether sulfones)/ polyvinylpyrrolidone membranes for high-temperature fuel cell applications", J. Mater. Chem. A, 3, 16, 8847-8854 (2015). https://doi.org/10.1039/C5TA00415B
  23. J. H. Park, P. Y. Lee, S. S. Jang, and J. H. Kim, "Due to the Difference in Uniformity of Electrical Characteristics between Cells in a Battery Pack SOC Estimation Performance Comparative Analysis", Trans. Korean Inst. Power Electron., 24, 1, 16-24 (2019). https://doi.org/10.6113/TKPE.2019.24.1.16
  24. P. C. Lee, C. H. Um, S. K. Jeoung, Y. K. Ko, J. U. Ha, J. Y. Lee, J. Y. Lee, K. S. Kim, and D. H. Kim, "Accelerated Thermal Aging of Natural Fiber/Polypropylene Composites for Automotive Interior Parts", Polym. Korea, 45, 6, 922-926 (2021). https://doi.org/10.7317/pk.2021.45.6.922
  25. R. Govindaraju, S. Jagannathan, M. Chinnasamy, and Kandhavadivu P, "Optimization of Process Parameters for Fabrication of Wool Fiber-Reinforced Polypropylene Composites with Respect to Mechanical Properties", J. Eng. Fibers Fabr., 9, 3, 126-133 (2014).
  26. R. Renaud and R. L. Leroy, "Separator Materials for use in Alkaline Water Electrolysers", Int. J. Hydrog. Energy, 7, 2, 155-166 (1982). https://doi.org/10.1016/0360-3199(82)90142-2
  27. A. A. Merdaw, A. O. Sharif, and G. A. W. Derwish, "Water permeability in polymeric membranes, Part 1", Desalination, 260, 1, 180-192 (2010). https://doi.org/10.1016/j.desal.2010.04.042
  28. D. M. F. Santos, C. A. C. Sequeira, D. Maccio, A. Saccone, and J. L. Figueiredo, "Platinum-rare earth electrodes for hydrogen evolution in alkaline water electrolysis", Int. J. Hydrog. Energy, 38, 8, 3137-3145 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.102
  29. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane", J. Korean Inst. Surf. Eng., 49, 2, 159-165 (2016). https://doi.org/10.5695/JKISE.2016.49.2.159