• Title/Summary/Keyword: 신경세포 배양

Search Result 204, Processing Time 0.028 seconds

Pretreatment of curcumin protects hippocampal neurons against excitotoxin-induced cell death (Curcumin의 전처리는 excitotoxin에 의한 세포사멸로부터 해마신경세포를 보호)

  • Kim, So-Jung;Kim, Keun-Ho;Kong, Kyoung-Hye;Lee, Jae-Won
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.12-17
    • /
    • 2007
  • Curcumin is a natural phenolic yellow curry spice, derived from the tumeric, which has been used for the treatment of diseases associated with oxidative stress and inflammation. Curcumin is known to have both anti-oxidative and anti-inflammatory properties. These properties can be beneficial to protect the brain from the neurodegenerative diseases. We now report the neuroprotective effects of curcumin pretreatment in primary hippocampal neurons to glutamate-induced excitotoxicity. Pretreatment of embryonic mouse hippocampal cell cultures with low does of curcumin protected neurons against glutamate-induced death, however, this neuroprotection was not correlated with the modulation of oxidative stress. Interestingly, high dose of curcumin showed the cytotoxicity in primary cultured hippocampal neurons. Immunoblot analyses showed that levels of stress response. protein HSP70 were significantly elevated in neurons exposed to low dose of curcumin, whereas levels of cleaved PARP were increased in neurons exposed to high dose of curcumin. These findings show that curcumin can modulate neuronal responses to glutamate, and suggest possible use of curcumin and related compounds in the prevention and/or treatment of neurodegenerative disorders.

Neuroprotective effect by Juglandis semen-herbal acupuncture against $H_2O_2-induced$ apoptosis in human neuroblastoma, SH-SY5Y cells (과산화수소로 유발된 사람 신경아세포종의 아폽토시스에서 호도 약침액의 신경보호효과)

  • Kim, Hak-Jae;Won, Hye-Jin;Park, Hae-Jeong;Ra, Je-Hyun;Park, Hi-Joon;Hong, Mee-Suk;Yim, Sung-Vin;Lee, Hye-Jung;Chung, Joo-Ho
    • Korean Journal of Acupuncture
    • /
    • v.23 no.3
    • /
    • pp.123-131
    • /
    • 2006
  • 목 적 : 과산화수소는 산화적 스트레스를 통해 아폽토시스를 유도하는 것으로 알려져 있다. 본 논문에서는 과산화수소로 유발된 신경아세포종 아폽토시스 과정에서 호도약침액의 효과를 관찰하였다. 방 법 : 과산화수소로 인한 신경아세포종의 아폽토시스에서 호도약침액의 효과를 알아보기 위해 배양 중인 신경아세포종에 과산화수소를 처리하고, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MIT)분석법, 4,6-diamidino-2-phenylindole (DAPI) 염색법, reverse transcription-polymerase chain reaction (RT-PCR), western blotting의 방법으로 확인하였다. 결 과 : 과산화수소로 인한 신경아세포종의 아폽토시스에서 호도약침액을 처리한 결과, 약침액을 처리한 세포의 생존이 약 30% 정도 증가하고, 핵 응축과 단편화를 막아주며, CASP3와 BAX단백질의 발현이 감소되었다. 결 론 : 이러한 결과로 호도약침액이 과산화수소로 인한 신경아세포종의 아폽토시스과정에서 보호효과를 나타내는 것으로 사료된다.

  • PDF

Microarray Analysis of Gene Expression Affected by Water-extracts of Pinelliae rhizoma in a Hypoxic Model of Cultured Rat Cortical Cells (배양대뇌신경세포 저산소증모델에서 반하여 의한 유전자표현의 변화)

  • Kwon, Gun-Rok;Jung, Hyun-Jung;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chul;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.905-916
    • /
    • 2009
  • Pinelliae rhizoma (Pr, 半夏) is a traditional medicine used in the treatment of incipient stroke. We investigated the effects of Pr on gene expression in a hypoxic model using cultured rat cortical cells. Pr (2.5 $\mu$g/ml) was added to the culture medium on DIV 12. A hypoxic shock (2% 0$_2$/5% CO$_2$, 37$^{\circ}$C, 3 hr) was given two days later (on DIV 14), and total mRNAs were isolated at 24 hr post-shock from both Pr-treated samples and untreated control cultures. Microarray using TwinChip $^{TM}$ Rat-5K (Digital Genomics, Seoul) indicated that Pr upregulated genes for cell growth and differentiation (tubb5, tgfa, ptpn11, n-ras, pdgfa) and antiapoptosis (mcl-1), while downregulating the apoptosis-induced gene (tieg). Therefore, it is interpreted that Pr protects neurons from hypxoic shock by maintaining cell growth and differentiation and by preventing apoptosis.

인간 신경아세포종 세포 배양을 통한 뇌 신경세포 생육 촉진인자의 생산

  • Hong, Jong-Soo;Woo, Kwang-Hoe;Park, Kyung-You;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.102-105
    • /
    • 1997
  • In cultivating human neuroblastoma cells maximum number of neurites per cell and length of the neurite were estimated as 5.5 and 2.2 (nm), respectively It was found that there was correlation between growth and differentiation of nerve cells. Maximum specific BDNF production rate was also calculated as 2.5$\times $10$^{-5}$(ng/cell/day) at 7$\times $ 10$^{5}$ (viable cells/ml) of maximum cell density, corresponding to 100 (ng/mL) of BDNF. The secretion of BDNF was occurred most in the later peroids of the cultivation, yielding 75 (ng/mL) of BDNF. The production of rate of BDNF was elongated in adding 1 ($\mu $g/mL) of BDNF as well as 40% increase of the length of the BDNF. It proves that BDNF can be used as one of biopharmaceuticals to treat age-related diseases such as Alzheimer's disease and Prakinson's disease. It can also provide the information of scaling-up mammalian cell cuture system to economically produce BDNF.

  • PDF

The Inhibitory Effect of Dopamine on Myoblast Fusion in vitro (Dopamine의 배양근원세포 융합억제 작용)

  • Kang, Man-Sik;Song, Woo-Keun;Song, Yung-Kook
    • The Korean Journal of Zoology
    • /
    • v.29 no.4
    • /
    • pp.235-244
    • /
    • 1986
  • In order to elucidate the effect of neurotransmitter on the differention of myoblasts in vitro, dopamine was administered to the myoblasts at varying stages of myogenesis, and the fusion index, the rate of creatine kinase (CK) synthesis, and the sensitivity to dopamine were determined. When dopamine $(3 \\times 10^{-5} M)$ was administered at 34 hr after myoblast seeding, a significant decrease in the fusion index as well as CK synthesis was observed, indicating a good correlation exists between these two parameters. In other experiment, dopamine was administered at varying stages of myogenesis and the inhibitory effect of dopamine as scored by fusion index at 96 hr was found to be cyclic in nature. This finding raised a possibility that arrangement of dopamine receptors occurs according to the cell cycle stages in myogenesis.

  • PDF

Follicle Cell Death during Ovarian Atresia in the Rat (Rat난소폐쇄에서의 난포의 사망기전)

  • ;;A. J. W. Hsueh
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.385-393
    • /
    • 1997
  • 다세포 생물에서 몸의 효율적 생존을 위한 각 기관의 homeostasis는 세포 증식과 사망에 의해 조절된다. 따라서, apoptosis라 명명된 세포사망은 정교한 기전에 의한 능동적이고 자발적인 사망기전으로써 몸의 정상적 유지를 위한 필수적인 현상이다. 발생기 세포나 신경세포 또는 흉선세포 분화 동안 과다한 세포의 제거가 apoptosis의 대표적인 예이며, 각종 호르몬에 의해 그 기능이 조절되는 난소세포에서도 apoptosis가 활발히 일어난다. Rat난소에는 태어날 때 수십 만개의 난포를 지니고 있는데, 이 중 단지 1%만이 배란에 사용되어질 뿐이고 나머지는 모두 사망하게 된다. 이러한 난포사망은 난소의 적절한 세포 수를 유지하기 위한 필수적 과정이며, 인위적으로 apoptosis를 억제하는 유전자인 bcl-2를 과다 발현시키면 난소암이 발생하는 연구결과가 이를 입증해주고 있다. 이처럼 중요한 난포 사망기전은 apoptosis라는 개념이 정립되면서 최근 들어 점차 그 연구가 활발해지고 있다. Apoptosis의 특징 중 뚜렷한 점은 DNA가 일정한 간격으로(180∼200 bp)잘려지는 DNA fragmentation현상으로, 이를 이용하여 DNA3'-end 부위에 방사선동위원소를 label한 후 이를 전기영동으로 분리하면 apoptosis를 손쉽게 측정할 수 있다. 난소의 기능은 시상하부호르몬인 LH와 FSH 뿐만 아니라 난소에서 분비되는 각종 난소국부호르몬들에 의해 조절된다. 특정한 발육단계의 난포는 특정한 호르몬에 의해 그 기능을 조절 받는데, 이러한 난소기능 조절기작은 매우 복잡한 경로를 지니고 있다. 이러한 복잡한 기작으로 인해 초기 연구에서첨 생체 내에서 밝히려는 연구 시도는 어려움에 부딪치게 되었다. 생체내 실험은 난소가 다양한 발육단계의 난포를 동시에 지니고 있어 특정한 발육단계의 난포 사망기전을 연구하기 어렵다. 또한 난포는 생체 내에서 다양한 호르몬을 동시에 분비하기 때문에 특정한 난소국부호르몬이 사망기전에 미치는 영향을 조사하기 힘든 점이 있다. 최근 들어 난포체외배양이 다양하게 개발되면서, 이러한 어려운 점을 극복할 수 있게 되었다. 본 논문은 각 발육단계의 난포를 절단해 체외배양하면서, apoptosis DNA 절단 현상을 이용하여 각종 난소국부 호르몬들이 난포발육단계별로 사망기전에 미치는 영향을 요약해 보였다. 난포는 발육하면서 점차 복잡한 호르몬 경로를 생존을 위해 필요로 한다. Prevulatory난포생존에 필요한 난소국부호르몬들은 early antral 단계의 난포에서는 그 미치는 영향이 감소되다가 preantral단계의 난포에서는 영향을 전혀 미치지 못했다. 단지 예외는 cGMP처리로써, 세포내 cGMP수준을 일정하게 유지시켜주는 것이 난포발육단계에 무관하게 생존에 중요한 인자로, 장래 연구는 난포 세포내의 cGMP수준을 조절하는 기작을 규명하는데 있을 것이다.

  • PDF

Evidence for the Drp1-dependent Mitochondrial Fission in the Axon of the Rat Cerebral Cortex Neurons (흰쥐 대뇌 피질 신경세포의 축삭에서 Drp1 의존적 미토콘드리아의 분열)

  • Cho, Bong-Ki;Lee, Seung-Bok;Sun, Woong;Kim, Young-Hwa
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Neurons utilize a large quantity of energy for their survival and function, and thereby require active mitochondrial function. Mitochondrial morphology shows dynamic changes, depending on the cellular condition, and mitochondrial dynamics are required for neuronal development and function. In this study, we found that the length of mitochondria in the distal axon is significantly shorter than that of mitochondria in dendrites or proximal axons of cerebral cortical neurons, and the reason for this difference is the local fission within the axon. We also found that suppression of Drp1, a key regulator of mitochondrial fission, resulted in significant elongation of mitochondria in axons. Collectively, these results suggest that local mitochondrial fission within the axon contributes to region-dependent mitochondrial length differences in the axons of cortical neurons.

Alleviating Effects of Euphorbiae humifusae L. Extract on the Neurotoxicity Induced by Lead (납의 신경독성에 대한 지금초 추출물의 독성경감 효과)

  • Lee, Sang-Hee;Seo, Young-Mi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.501-510
    • /
    • 2018
  • This study examined the neurotoxicity induced by lead acetate (LA) on cultured C6 glioma cells and the protective effects of Euphorbiae humifusae L. (EH) extract against LA-induced cytotoxicity. In this study, LA exhibited neurotoxicity in a dose-dependent manner compared to the control, and was determined to be highly-toxic according to the toxic criteria. The $XTT_{50}$ value of LA was calculated at a concentration of $38.6{\mu}M$ after C6 glioma cells were incubated for 72 hours in the media containing $30{\sim}50{\mu}M$ of LA, respectively. In addition, LA-induced neurotoxicity was suggested to correlate with the level of oxidative stress because vitamin E, an antioxidant, increased the cell viability damaged by LA-induced cytotoxicity. The EH extract effectively prevented cell injury from LA-induced cytotoxicity via its antioxidative effects, such as inhibitory ability of lipid peroxidation, superoxide dismutase-like activity and 1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity. These antioxidative effects may result in components, such as polyphenol or flavonoids including gallic acid or quercetin. In conclusion, natural resources, such as EH extracts, may be a useful putative agent for the treatment of diseases associated with oxidative stress, such as lead neurotoxicity.

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration (신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구)

  • Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.

Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine (L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.108-118
    • /
    • 2022
  • The subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) that generate new neurons throughout one's lifetime. Many extracellular and intracellular factors that affect cell proliferation and neuronal differentiation of NSCs are already well-known. Recently, L-type calcium channels have been reported to regulate neural development and are present in NSCs, differentiating neuroblasts, and mature neurons in the SVZ. Nifedipine, a blocker of L-type calcium channels, has been long used as a therapeutic drug for hypertension. However, studies on the use of nifedipine to inhibit L-type calcium channels of NSCs are lacking. Herein, we treated NSCs cultured from mouse postnatal SVZ with nifedipine during neuronal differentiation. Nifedipine increased the number of Tuj1-positive neurons but did not significantly change the number of Olig2-positive oligodendrocytes. Nifedipine increased cell division during early differentiation, which was detected using the 5-ethynyl-2'-deoxyuridine incorporation assay and immunocytochemistry assessment by staining the cells with phosphorylated histone H3, a mitosis marker. Nifedipine increased the transcription of Dlx2, a neurogenic transcription factor, and the level of Mash1, a marker for early neurogenesis. In addition to nifedipine, verapamil, which is also an L-type calcium channel blocker, showed a slight increase in neurogenesis, but its statistical significance was very low. In contrast, pimozide, a T-type calcium channel blocker, did not affect neurogenesis, although T-type calcium channel genes Cav3.1, Cav3.2, and Cav3.3 were expressed. In summary, nifedipine might promote the neuronal fate of NSCs during early differentiation and calcium signaling through L-type calcium channels might be involved in neuronal differentiation, especially during the early stages of differentiation.